Skip to content

Commit

Permalink
New Metric: Dunn Index (Lightning-AI#2049)
Browse files Browse the repository at this point in the history
  • Loading branch information
matsumotosan authored Sep 6, 2023
1 parent d4ab66c commit 163b0aa
Show file tree
Hide file tree
Showing 12 changed files with 360 additions and 48 deletions.
11 changes: 2 additions & 9 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,17 +12,10 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
### Added

- Added `MutualInformationScore` metric to cluster package ([#2008](https://github.com/Lightning-AI/torchmetrics/pull/2008))


- Added `RandScore` metric to cluster package ([#2025](https://github.com/Lightning-AI/torchmetrics/pull/2025))


- Added `CalinskiHarabaszScore` metric to cluster package ([#2036](https://github.com/Lightning-AI/torchmetrics/pull/2036))


- Added `NormalizedMutualInfoScore` metric to cluster package ([#2029](https://github.com/Lightning-AI/torchmetrics/pull/2029))


- Added `CalinskiHarabaszScore` metric to cluster package ([#2036](https://github.com/Lightning-AI/torchmetrics/pull/2036))
- Added `DunnIndex` metric to cluster package ([#2049](https://github.com/Lightning-AI/torchmetrics/pull/2049))

### Changed

Expand Down
21 changes: 21 additions & 0 deletions docs/source/clustering/dunn_index.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
.. customcarditem::
:header: Dunn Index
:image: https://pl-flash-data.s3.amazonaws.com/assets/thumbnails/clustering.svg
:tags: Clustering

.. include:: ../links.rst

##########
Dunn Index
##########

Module Interface
________________

.. autoclass:: torchmetrics.clustering.DunnIndex
:exclude-members: update, compute

Functional Interface
____________________

.. autofunction:: torchmetrics.functional.clustering.dunn_index
1 change: 1 addition & 0 deletions docs/source/links.rst
Original file line number Diff line number Diff line change
Expand Up @@ -154,3 +154,4 @@
.. _Normalized Mutual Information Score: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_info_score.html
.. _pycocotools: https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools
.. _Rand Score: https://link.springer.com/article/10.1007/BF01908075
.. _Dunn Index: https://en.wikipedia.org/wiki/Dunn_index
2 changes: 2 additions & 0 deletions src/torchmetrics/clustering/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from torchmetrics.clustering.calinski_harabasz_score import CalinskiHarabaszScore
from torchmetrics.clustering.dunn_index import DunnIndex
from torchmetrics.clustering.mutual_info_score import MutualInfoScore
from torchmetrics.clustering.normalized_mutual_info_score import NormalizedMutualInfoScore
from torchmetrics.clustering.rand_score import RandScore

__all__ = [
"CalinskiHarabaszScore",
"DunnIndex",
"MutualInfoScore",
"NormalizedMutualInfoScore",
"RandScore",
Expand Down
116 changes: 116 additions & 0 deletions src/torchmetrics/clustering/dunn_index.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Optional, Sequence, Union

from torch import Tensor

from torchmetrics.functional.clustering.dunn_index import dunn_index
from torchmetrics.metric import Metric
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["DunnIndex.plot"]


class DunnIndex(Metric):
r"""Compute `Dunn Index`_.
.. math::
DI_m = \frac{\min_{1\leq i<j\leq m} \delta(C_i,C_j)}{\max_{1\leq k\leq m} \Delta_k}
Where :math:`C_i` is a cluster of tensors, :math:`C_j` is a cluster of tensors,
and :math:`\delta(C_i,C_j)` is the intercluster distance metric for :math:`m` clusters.
This clustering metric is an intrinsic measure, because it does not rely on ground truth labels for the evaluation.
Instead it examines how well the clusters are separated from each other. The score is higher when clusters are dense
and well separated, which relates to a standard concept of a cluster.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``data`` (:class:`~torch.Tensor`): float tensor with shape ``(N,d)`` with the embedded data.
``d`` is the dimensionality of the embedding space.
- ``labels`` (:class:`~torch.Tensor`): single integer tensor with shape ``(N,)`` with cluster labels
As output of ``forward`` and ``compute`` the metric returns the following output:
- ``dunn_index`` (:class:`~torch.Tensor`): A tensor with the Dunn Index
Args:
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> import torch
>>> from torchmetrics.clustering import DunnIndex
>>> data = torch.tensor([[0, 0], [0.5, 0], [1, 0], [0.5, 1]])
>>> labels = torch.tensor([0, 0, 0, 1])
>>> dunn_index = DunnIndex(p=2)
>>> dunn_index(data, labels)
tensor(2.)
"""

is_differentiable: bool = True
higher_is_better: bool = True
full_state_update: bool = True
plot_lower_bound: float = 0.0
data: List[Tensor]
labels: List[Tensor]

def __init__(self, p: float = 2, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.p = p

self.add_state("data", default=[], dist_reduce_fx="cat")
self.add_state("labels", default=[], dist_reduce_fx="cat")

def update(self, data: Tensor, labels: Tensor) -> None:
"""Update state with predictions and targets."""
self.data.append(data)
self.labels.append(labels)

def compute(self) -> Tensor:
"""Compute mutual information over state."""
return dunn_index(dim_zero_cat(self.data), dim_zero_cat(self.labels), self.p)

def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.clustering import DunnIndex
>>> data = torch.tensor([[0, 0], [0.5, 0], [1, 0], [0.5, 1]])
>>> labels = torch.tensor([0, 0, 0, 1])
>>> metric = DunnIndex(p=2)
>>> metric.update(data, labels)
>>> fig_, ax_ = metric.plot(metric.compute())
"""
return self._plot(val, ax)
2 changes: 2 additions & 0 deletions src/torchmetrics/functional/clustering/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from torchmetrics.functional.clustering.calinski_harabasz_score import calinski_harabasz_score
from torchmetrics.functional.clustering.dunn_index import dunn_index
from torchmetrics.functional.clustering.mutual_info_score import mutual_info_score
from torchmetrics.functional.clustering.normalized_mutual_info_score import normalized_mutual_info_score
from torchmetrics.functional.clustering.rand_score import rand_score

__all__ = [
"calinski_harabasz_score",
"dunn_index",
"mutual_info_score",
"normalized_mutual_info_score",
"rand_score",
Expand Down
83 changes: 83 additions & 0 deletions src/torchmetrics/functional/clustering/dunn_index.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from itertools import combinations
from typing import Tuple

import torch
from torch import Tensor


def _dunn_index_update(data: Tensor, labels: Tensor, p: float) -> Tuple[Tensor, Tensor]:
"""Update and return variables required to compute the Dunn index.
Args:
data: feature vectors of shape (n_samples, n_features)
labels: cluster labels
p: p-norm (distance metric)
Returns:
intercluster_distance: intercluster distances
max_intracluster_distance: max intracluster distances
"""
unique_labels, inverse_indices = labels.unique(return_inverse=True)
clusters = [data[inverse_indices == label_idx] for label_idx in range(len(unique_labels))]
centroids = [c.mean(dim=0) for c in clusters]

intercluster_distance = torch.linalg.norm(
torch.stack([a - b for a, b in combinations(centroids, 2)], dim=0), ord=p, dim=1
)

max_intracluster_distance = torch.stack(
[torch.linalg.norm(ci - mu, ord=p, dim=1).max() for ci, mu in zip(clusters, centroids)]
)

return intercluster_distance, max_intracluster_distance


def _dunn_index_compute(intercluster_distance: Tensor, max_intracluster_distance: Tensor) -> Tensor:
"""Compute the Dunn index based on updated state.
Args:
intercluster_distance: intercluster distances
max_intracluster_distance: max intracluster distances
Returns:
scalar tensor with the dunn index
"""
return intercluster_distance.min() / max_intracluster_distance.max()


def dunn_index(data: Tensor, labels: Tensor, p: float = 2) -> Tensor:
"""Compute the Dunn index.
Args:
data: feature vectors
labels: cluster labels
p: p-norm used for distance metric
Returns:
scalar tensor with the dunn index
Example:
>>> from torchmetrics.functional.clustering import dunn_index
>>> data = torch.tensor([[0, 0], [0.5, 0], [1, 0], [0.5, 1]])
>>> labels = torch.tensor([0, 0, 0, 1])
>>> dunn_index(data, labels)
tensor(2.)
"""
pairwise_distance, max_distance = _dunn_index_update(data, labels, p)
return _dunn_index_compute(pairwise_distance, max_distance)
21 changes: 9 additions & 12 deletions src/torchmetrics/functional/clustering/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,13 @@ def calculate_contingency_matrix(
return contingency


def _is_real_discrete_label(x: Tensor) -> bool:
"""Check if tensor of labels is real and discrete."""
if x.ndim != 1:
raise ValueError(f"Expected arguments to be 1-d tensors but got {x.ndim}-d tensors.")
return not (torch.is_floating_point(x) or torch.is_complex(x))


def check_cluster_labels(preds: Tensor, target: Tensor) -> None:
"""Check shape of input tensors and if they are real, discrete tensors.
Expand All @@ -160,18 +167,8 @@ def check_cluster_labels(preds: Tensor, target: Tensor) -> None:
"""
_check_same_shape(preds, target)
if preds.ndim != 1:
raise ValueError(f"Expected arguments to be 1d tensors but got {preds.ndim} and {target.ndim}")
if (
torch.is_floating_point(preds)
or torch.is_complex(preds)
or torch.is_floating_point(target)
or torch.is_complex(target)
):
raise ValueError(
f"Expected real, discrete values but received {preds.dtype} for"
f"predictions and {target.dtype} for target labels instead."
)
if not (_is_real_discrete_label(preds) and _is_real_discrete_label(target)):
raise ValueError(f"Expected real, discrete values for x but received {preds.dtype} and {target.dtype}.")


def calcualte_pair_cluster_confusion_matrix(
Expand Down
40 changes: 23 additions & 17 deletions tests/unittests/clustering/inputs.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,38 +14,44 @@
from collections import namedtuple

import torch
from sklearn.datasets import make_blobs

from unittests import BATCH_SIZE, EXTRA_DIM, NUM_BATCHES
from unittests import BATCH_SIZE, EXTRA_DIM, NUM_BATCHES, NUM_CLASSES
from unittests.helpers import seed_all

seed_all(42)


Input = namedtuple("Input", ["preds", "target"])
NUM_CLASSES = 10

# extrinsic input for clustering metrics that requires predicted clustering labels and target clustering labels
_single_target_extrinsic1 = Input(
ExtrinsicInput = namedtuple("ExtrinsicInput", ["preds", "target"])

# intrinsic input for clustering metrics that requires only predicted clustering labels and the cluster embeddings
IntrinsicInput = namedtuple("IntrinsicInput", ["data", "labels"])


def _batch_blobs(num_batches, num_samples, num_features, num_classes):
data, labels = [], []
for _ in range(num_batches):
_data, _labels = make_blobs(num_samples, num_features, centers=num_classes)
data.append(torch.tensor(_data))
labels.append(torch.tensor(_labels))

return IntrinsicInput(data=torch.stack(data), labels=torch.stack(labels))


_single_target_extrinsic1 = ExtrinsicInput(
preds=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)),
target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)),
)

_single_target_extrinsic2 = Input(
_single_target_extrinsic2 = ExtrinsicInput(
preds=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)),
target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)),
)

_float_inputs_extrinsic = Input(
_float_inputs_extrinsic = ExtrinsicInput(
preds=torch.rand((NUM_BATCHES, BATCH_SIZE)), target=torch.rand((NUM_BATCHES, BATCH_SIZE))
)

# intrinsic input for clustering metrics that requires only predicted clustering labels and the cluster embeddings
_single_target_intrinsic1 = Input(
preds=torch.randn(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM),
target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)),
)

_single_target_intrinsic2 = Input(
preds=torch.randn(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM),
target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)),
)
_single_target_intrinsic1 = _batch_blobs(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM, NUM_CLASSES)
_single_target_intrinsic2 = _batch_blobs(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM, NUM_CLASSES)
Loading

0 comments on commit 163b0aa

Please sign in to comment.