Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Mdai deploy #2

Open
wants to merge 7 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
69 changes: 38 additions & 31 deletions .mdai/helper.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,48 +4,53 @@
import util
import torch
from io import BytesIO
from ct.ct_pe_constants import W_CENTER_DEFAULT, W_WIDTH_DEFAULT


def format_img(img, input_slice_number, normalize_images=False):
num_slices = img.shape[0]
num_windows = num_slices - input_slice_number + 1

# crop
row = (img.shape[-2] - 192) // 2
col = (img.shape[-1] - 192) // 2
img = img[:, row : row + 192, col : col + 192]
img = img.astype(np.float32)

# noramlize Hounsfield Units
if normalize_images:
img = util.normalize(img)

# expand dimention for tensor
img_split = np.array([img[i : i + input_slice_number] for i in range(num_windows)])
img_expand = [
np.expand_dims(np.expand_dims(split, axis=0), axis=0) for split in img_split
]
return img_expand
from ct.ct_pe_constants import (
W_CENTER_DEFAULT,
W_WIDTH_DEFAULT,
CONTRAST_HU_MEAN,
CONTRAST_HU_MIN,
CONTRAST_HU_MAX,
)


def resize_array(np_array, slice_shape=(208, 208), interpolation=cv2.INTER_AREA):
return cv2.resize(np_array, slice_shape, interpolation=interpolation)


def preprocess(x_arrays, input_slice_number):
def preprocess(x_arrays):
x_arrays = sorted(x_arrays, key=lambda dcm: int(dcm.ImagePositionPatient[-1]))
x_arrays = [resize_array(dcm.pixel_array) for dcm in x_arrays]
x_arrays = np.array([resize_array(dcm.pixel_array) for dcm in x_arrays])
# rescale
interpolation = cv2.INTER_AREA
x_arrays = util.resize_slice_wise(x_arrays, (208, 208), interpolation)

# crop
row = (x_arrays.shape[-2] - 192) // 2
col = (x_arrays.shape[-1] - 192) // 2
x_arrays = x_arrays[:, row : row + 192, col : col + 192]
return x_arrays

x_stacked = np.stack(x_arrays, 0)
x_stacked = util.apply_window(x_stacked, W_CENTER_DEFAULT, W_WIDTH_DEFAULT)

x = format_img(x_stacked, input_slice_number, normalize_images=True)
x = [torch.from_numpy(np.array(window)) for window in x]
def get_windows(x_stacked, input_slice_number):
num_slices = x_stacked.shape[0]
num_windows = num_slices - input_slice_number + 1

x_un_normalized = format_img(x_stacked, input_slice_number, normalize_images=False)
x_stacked = util.normalize(x_stacked)
for i in range(num_windows):
img_split = np.array(x_stacked[i : i + input_slice_number])
img_expand = np.expand_dims(np.expand_dims(img_split, axis=0), axis=0)
yield torch.from_numpy(np.array(img_expand))

return x, x_un_normalized

def get_best_window(x_stacked, input_slice_number, best_window):

x_unnorm_best = np.array(x_stacked[best_window : best_window + input_slice_number])
# noramlize Hounsfield Units
x_stacked = util.normalize(x_stacked)
x_best = np.array(x_stacked[best_window : best_window + input_slice_number])
x_unnorm_best = np.expand_dims(np.expand_dims(x_unnorm_best, axis=0), axis=0)
x_best = np.expand_dims(np.expand_dims(x_best, axis=0), axis=0)
return torch.from_numpy(np.array(x_best)), x_unnorm_best


def compute_gradcam_gif(cam, x, x_un_normalized):
Expand All @@ -62,6 +67,8 @@ def compute_gradcam_gif(cam, x, x_un_normalized):
save_all=True,
append_images=cam_frames[1:] if len(cam_frames) > 1 else [],
format="GIF",
loop=0,
optimize=True,
)

return gradcam_output_buffer
32 changes: 18 additions & 14 deletions .mdai/mdai_deploy.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,12 +6,11 @@
from custom_gradcam import CustomGradCAM
from saver import ModelSaver
import util
from helper import preprocess, compute_gradcam_gif
from helper import compute_gradcam_gif, preprocess, get_best_window, get_windows

DEFAULT_PROBABILITY_THRESHOLD = "0.5"
DEFAULT_INPUT_SLICE_NUMBER = "24"
GRADCAM_OFF = "0"
GRADCAM_MAX_PROBABILITY = "1"
GRADCAM = "0"


class MDAIModel:
Expand Down Expand Up @@ -100,7 +99,11 @@ def predict(self, data):
x_arrays = []
for instance in input_instances:
tags = instance["tags"]
ds = pydicom.dcmread(BytesIO(instance["file"]))
try:
ds = pydicom.dcmread(BytesIO(instance["file"]))
arr = ds.pixel_array
except:
continue
x_orig = ds
x_arrays.append(x_orig)

Expand All @@ -111,30 +114,31 @@ def predict(self, data):
if len(x_arrays) < input_slice_number:
input_slice_number = len(x_arrays)

x, x_un_normalized = preprocess(x_arrays, input_slice_number)
x_stacked = preprocess(x_arrays)
self.model.eval()

best_window = 0
probability = 0.0
i = 0
with torch.no_grad():
for i, window in enumerate(x):
for window in get_windows(x_stacked, input_slice_number):
cls_logits = self.model.forward(
window.to(self.device, dtype=torch.float)
)
cls_probs = torch.sigmoid(cls_logits).to("cpu").numpy()
if cls_probs[0][0] > probability:
probability = cls_probs[0][0]
best_window = i

i += 1
if not probability >= float(
input_args.get("probability_threshold", DEFAULT_PROBABILITY_THRESHOLD)
):
result = {
"type": "NONE",
"study_uid": tags["StudyInstanceUID"],
"series_uid": tags["SeriesInstanceUID"],
"instance_uid": tags["SOPInstanceUID"],
"frame_number": None,
"probability": float(probability),
}
else:
result = {
Expand All @@ -147,23 +151,23 @@ def predict(self, data):
"probability": float(probability),
}

if input_args.get("gradcam", GRADCAM_OFF) == GRADCAM_MAX_PROBABILITY:
if input_args.get("gradcam", GRADCAM) == "1":
x_best, x_unnorm_best = get_best_window(
x_stacked, input_slice_number, best_window
)
self.grad_cam.register_hooks()

with torch.set_grad_enabled(True):
probs, idx = self.grad_cam.forward(x[best_window])
probs, idx = self.grad_cam.forward(x_best)
self.grad_cam.backward(idx=idx[0])
cam = self.grad_cam.get_cam("module.encoders.3")

self.grad_cam.remove_hooks()

gradcam_output_buffer = compute_gradcam_gif(
cam, x[best_window], x_un_normalized[best_window]
)
gradcam_output_buffer = compute_gradcam_gif(cam, x_best, x_unnorm_best)
gradcam_explanation = [
{
"name": "Grad-CAM",
"description": "Visualize how parts of the image affects neural network’s output by looking into the activation maps. From _Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization_ (https://arxiv.org/abs/1610.02391)",
"content": gradcam_output_buffer.getvalue(),
"content_type": "image/gif",
}
Expand Down