forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARK-7462] By default retain group by columns in aggregate
Updated Java, Scala, Python, and R. Author: Reynold Xin <[email protected]> Author: Shivaram Venkataraman <[email protected]> Closes apache#5996 from rxin/groupby-retain and squashes the following commits: aac7119 [Reynold Xin] Merge branch 'groupby-retain' of github.com:rxin/spark into groupby-retain f6858f6 [Reynold Xin] Merge branch 'master' into groupby-retain 5f923c0 [Reynold Xin] Merge pull request #15 from shivaram/sparkr-groupby-retrain c1de670 [Shivaram Venkataraman] Revert workaround in SparkR to retain grouped cols Based on reverting code added in commit amplab-extras@9a6be74 b8b87e1 [Reynold Xin] Fixed DataFrameJoinSuite. d910141 [Reynold Xin] Updated rest of the files 1e6e666 [Reynold Xin] [SPARK-7462] By default retain group by columns in aggregate
- Loading branch information
Showing
10 changed files
with
218 additions
and
172 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
193 changes: 193 additions & 0 deletions
193
sql/core/src/test/scala/org/apache/spark/sql/DataFrameAggregateSuite.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.sql | ||
|
||
import org.apache.spark.sql.TestData._ | ||
import org.apache.spark.sql.functions._ | ||
import org.apache.spark.sql.test.TestSQLContext | ||
import org.apache.spark.sql.test.TestSQLContext.implicits._ | ||
import org.apache.spark.sql.types.DecimalType | ||
|
||
|
||
class DataFrameAggregateSuite extends QueryTest { | ||
|
||
test("groupBy") { | ||
checkAnswer( | ||
testData2.groupBy("a").agg(sum($"b")), | ||
Seq(Row(1, 3), Row(2, 3), Row(3, 3)) | ||
) | ||
checkAnswer( | ||
testData2.groupBy("a").agg(sum($"b").as("totB")).agg(sum('totB)), | ||
Row(9) | ||
) | ||
checkAnswer( | ||
testData2.groupBy("a").agg(count("*")), | ||
Row(1, 2) :: Row(2, 2) :: Row(3, 2) :: Nil | ||
) | ||
checkAnswer( | ||
testData2.groupBy("a").agg(Map("*" -> "count")), | ||
Row(1, 2) :: Row(2, 2) :: Row(3, 2) :: Nil | ||
) | ||
checkAnswer( | ||
testData2.groupBy("a").agg(Map("b" -> "sum")), | ||
Row(1, 3) :: Row(2, 3) :: Row(3, 3) :: Nil | ||
) | ||
|
||
val df1 = Seq(("a", 1, 0, "b"), ("b", 2, 4, "c"), ("a", 2, 3, "d")) | ||
.toDF("key", "value1", "value2", "rest") | ||
|
||
checkAnswer( | ||
df1.groupBy("key").min(), | ||
df1.groupBy("key").min("value1", "value2").collect() | ||
) | ||
checkAnswer( | ||
df1.groupBy("key").min("value2"), | ||
Seq(Row("a", 0), Row("b", 4)) | ||
) | ||
} | ||
|
||
test("spark.sql.retainGroupColumns config") { | ||
checkAnswer( | ||
testData2.groupBy("a").agg(sum($"b")), | ||
Seq(Row(1, 3), Row(2, 3), Row(3, 3)) | ||
) | ||
|
||
TestSQLContext.conf.setConf("spark.sql.retainGroupColumns", "false") | ||
checkAnswer( | ||
testData2.groupBy("a").agg(sum($"b")), | ||
Seq(Row(3), Row(3), Row(3)) | ||
) | ||
TestSQLContext.conf.setConf("spark.sql.retainGroupColumns", "true") | ||
} | ||
|
||
test("agg without groups") { | ||
checkAnswer( | ||
testData2.agg(sum('b)), | ||
Row(9) | ||
) | ||
} | ||
|
||
test("average") { | ||
checkAnswer( | ||
testData2.agg(avg('a)), | ||
Row(2.0)) | ||
|
||
// Also check mean | ||
checkAnswer( | ||
testData2.agg(mean('a)), | ||
Row(2.0)) | ||
|
||
checkAnswer( | ||
testData2.agg(avg('a), sumDistinct('a)), // non-partial | ||
Row(2.0, 6.0) :: Nil) | ||
|
||
checkAnswer( | ||
decimalData.agg(avg('a)), | ||
Row(new java.math.BigDecimal(2.0))) | ||
checkAnswer( | ||
decimalData.agg(avg('a), sumDistinct('a)), // non-partial | ||
Row(new java.math.BigDecimal(2.0), new java.math.BigDecimal(6)) :: Nil) | ||
|
||
checkAnswer( | ||
decimalData.agg(avg('a cast DecimalType(10, 2))), | ||
Row(new java.math.BigDecimal(2.0))) | ||
// non-partial | ||
checkAnswer( | ||
decimalData.agg(avg('a cast DecimalType(10, 2)), sumDistinct('a cast DecimalType(10, 2))), | ||
Row(new java.math.BigDecimal(2.0), new java.math.BigDecimal(6)) :: Nil) | ||
} | ||
|
||
test("null average") { | ||
checkAnswer( | ||
testData3.agg(avg('b)), | ||
Row(2.0)) | ||
|
||
checkAnswer( | ||
testData3.agg(avg('b), countDistinct('b)), | ||
Row(2.0, 1)) | ||
|
||
checkAnswer( | ||
testData3.agg(avg('b), sumDistinct('b)), // non-partial | ||
Row(2.0, 2.0)) | ||
} | ||
|
||
test("zero average") { | ||
val emptyTableData = Seq.empty[(Int, Int)].toDF("a", "b") | ||
checkAnswer( | ||
emptyTableData.agg(avg('a)), | ||
Row(null)) | ||
|
||
checkAnswer( | ||
emptyTableData.agg(avg('a), sumDistinct('b)), // non-partial | ||
Row(null, null)) | ||
} | ||
|
||
test("count") { | ||
assert(testData2.count() === testData2.map(_ => 1).count()) | ||
|
||
checkAnswer( | ||
testData2.agg(count('a), sumDistinct('a)), // non-partial | ||
Row(6, 6.0)) | ||
} | ||
|
||
test("null count") { | ||
checkAnswer( | ||
testData3.groupBy('a).agg(count('b)), | ||
Seq(Row(1,0), Row(2, 1)) | ||
) | ||
|
||
checkAnswer( | ||
testData3.groupBy('a).agg(count('a + 'b)), | ||
Seq(Row(1,0), Row(2, 1)) | ||
) | ||
|
||
checkAnswer( | ||
testData3.agg(count('a), count('b), count(lit(1)), countDistinct('a), countDistinct('b)), | ||
Row(2, 1, 2, 2, 1) | ||
) | ||
|
||
checkAnswer( | ||
testData3.agg(count('b), countDistinct('b), sumDistinct('b)), // non-partial | ||
Row(1, 1, 2) | ||
) | ||
} | ||
|
||
test("zero count") { | ||
val emptyTableData = Seq.empty[(Int, Int)].toDF("a", "b") | ||
assert(emptyTableData.count() === 0) | ||
|
||
checkAnswer( | ||
emptyTableData.agg(count('a), sumDistinct('a)), // non-partial | ||
Row(0, null)) | ||
} | ||
|
||
test("zero sum") { | ||
val emptyTableData = Seq.empty[(Int, Int)].toDF("a", "b") | ||
checkAnswer( | ||
emptyTableData.agg(sum('a)), | ||
Row(null)) | ||
} | ||
|
||
test("zero sum distinct") { | ||
val emptyTableData = Seq.empty[(Int, Int)].toDF("a", "b") | ||
checkAnswer( | ||
emptyTableData.agg(sumDistinct('a)), | ||
Row(null)) | ||
} | ||
|
||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.