Implementation of papers:
-
Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchmark and Adversarial Graph Learning
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),2021.
Tianshui Chen*, Tao Pu*, Hefeng Wu, Yuan Xie, Lingbo Liu, Liang Lin. -
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition
ACM International Conference on Multimedia (ACM MM), 2020. (Oral Presentation)
Yuan Xie, Tianshui Chen, Tao Pu, Hefeng Wu, Liang Lin.
Ubuntu 16.04 LTS, Python 3.5, PyTorch 1.3
Note: We also provide docker image for this project, click here. (Tag: py3-pytorch1.3-agra)
To apply for the AFE, please complete the AFE Database User Agreement and submit it to [email protected] or [email protected].
Note:
- The AFE Database Agreement needs to be signed by the faculty member at a university or college and sent it by email.
- In order to comply with relevant regulations, you need to apply for the image data of the following data sets by yourself, including CK+, JAFFE, SFEW 2.0, FER2013, ExpW, RAF.
You can download pre-train models in Baidu Drive (password: tzrf) and OneDrive.
Note: To replace backbone of each methods, you should modify and run getPreTrainedModel_ResNet.py (or getPreTrainedModel_MobileNet.py) in the folder where you want to use the method.
Before run these script files, you should download datasets and pre-train model, and run getPreTrainedModel_ResNet.py (or getPreTrainedModel_MobileNet.py).
cd ICID
bash Train.sh
cd DFA
bash Train.sh
cd LPL
bash Train.sh
cd DETN
bash TrainOnSourceDomain.sh # Train Model On Source Domain
bash TransferToTargetDomain.sh # Then, Transfer Model to Target Domain
cd FTDNN
bash Train.sh
cd ECAN
bash TrainOnSourceDomain.sh # Train Model On Source Domain
bash TransferToTargetDomain.sh # Then, Transfer Model to Target Domain
cd CADA
bash TrainOnSourceDomain.sh # Train Model On Source Domain
bash TransferToTargetDomain.sh # Then, Transfer Model to Target Domain
cd SAFN
bash TrainWithSAFN.sh
cd SWD
bash Train.sh
cd AGRA
bash TrainOnSourceDomain.sh # Train Model On Source Domain
bash TransferToTargetDomain.sh # Then, Transfer Model to Target Domain
Methods | Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|---|
ICID | ResNet-50 | 74.42 | 50.70 | 48.85 | 53.70 | 69.54 | 59.44 |
DFA | ResNet-50 | 64.26 | 44.44 | 43.07 | 45.79 | 56.86 | 50.88 |
LPL | ResNet-50 | 74.42 | 53.05 | 48.85 | 55.89 | 66.90 | 59.82 |
DETN | ResNet-50 | 78.22 | 55.89 | 49.40 | 52.29 | 47.58 | 56.68 |
FTDNN | ResNet-50 | 79.07 | 52.11 | 47.48 | 55.98 | 67.72 | 60.47 |
ECAN | ResNet-50 | 79.77 | 57.28 | 52.29 | 56.46 | 47.37 | 58.63 |
CADA | ResNet-50 | 72.09 | 52.11 | 53.44 | 57.61 | 63.15 | 59.68 |
SAFN | ResNet-50 | 75.97 | 61.03 | 52.98 | 55.64 | 64.91 | 62.11 |
SWD | ResNet-50 | 75.19 | 54.93 | 52.06 | 55.84 | 68.35 | 61.27 |
Ours | ResNet-50 | 85.27 | 61.50 | 56.43 | 58.95 | 68.50 | 66.13 |
Methods | Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|---|
ICID | ResNet-18 | 67.44 | 48.83 | 47.02 | 53.00 | 68.52 | 56.96 |
DFA | ResNet-18 | 54.26 | 42.25 | 38.30 | 47.88 | 47.42 | 46.02 |
LPL | ResNet-18 | 72.87 | 53.99 | 49.31 | 53.61 | 68.35 | 59.63 |
DETN | ResNet-18 | 64.19 | 52.11 | 42.25 | 42.01 | 43.92 | 48.90 |
FTDNN | ResNet-18 | 76.74 | 50.23 | 49.54 | 53.28 | 68.08 | 59.57 |
ECAN | ResNet-18 | 66.51 | 52.11 | 48.21 | 50.76 | 48.73 | 53.26 |
CADA | ResNet-18 | 73.64 | 55.40 | 52.29 | 54.71 | 63.74 | 59.96 |
SAFN | ResNet-18 | 68.99 | 49.30 | 50.46 | 53.31 | 68.32 | 58.08 |
SWD | ResNet-18 | 72.09 | 53.52 | 49.31 | 53.70 | 65.85 | 58.89 |
Ours | ResNet-18 | 77.52 | 61.03 | 52.75 | 54.94 | 69.70 | 63.19 |
Methods | Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|---|
ICID | MobileNet V2 | 57.36 | 37.56 | 38.30 | 44.47 | 60.64 | 47.67 |
DFA | MobileNet V2 | 41.86 | 35.21 | 29.36 | 42.36 | 43.66 | 38.49 |
LPL | MobileNet V2 | 59.69 | 40.38 | 40.14 | 50.13 | 62.26 | 50.52 |
DETN | MobileNet V2 | 53.49 | 40.38 | 35.09 | 45.88 | 45.26 | 44.02 |
FTDNN | MobileNet V2 | 71.32 | 46.01 | 45.41 | 49.96 | 62.87 | 55.11 |
ECAN | MobileNet V2 | 53.49 | 43.08 | 35.09 | 45.77 | 45.09 | 44.50 |
CADA | MobileNet V2 | 62.79 | 53.05 | 43.12 | 49.34 | 59.40 | 53.54 |
SAFN | MobileNet V2 | 66.67 | 45.07 | 40.14 | 49.90 | 61.40 | 52.64 |
SWD | MobileNet V2 | 68.22 | 55.40 | 43.58 | 50.30 | 60.04 | 55.51 |
Ours | MobileNet V2 | 72.87 | 55.40 | 45.64 | 51.05 | 63.94 | 57.78 |
Methods | Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|---|
ICID | ResNet-50 | 56.59 | 57.28 | 44.27 | 46.92 | 52.91 | 51.59 |
DFA | ResNet-50 | 51.86 | 52.70 | 38.03 | 41.93 | 60.12 | 48.93 |
LPL | ResNet-50 | 73.64 | 61.03 | 49.77 | 49.54 | 55.26 | 57.85 |
DETN | ResNet-50 | 56.27 | 52.11 | 44.72 | 42.17 | 59.80 | 51.01 |
FTDNN | ResNet-50 | 61.24 | 57.75 | 47.25 | 46.36 | 52.89 | 53.10 |
ECAN | ResNet-50 | 58.14 | 56.91 | 46.33 | 46.30 | 61.44 | 53.82 |
CADA | ResNet-50 | 72.09 | 49.77 | 50.92 | 50.32 | 61.70 | 56.96 |
SAFN | ResNet-50 | 73.64 | 64.79 | 49.08 | 48.89 | 55.69 | 58.42 |
SWD | ResNet-50 | 72.09 | 61.50 | 48.85 | 48.83 | 56.22 | 57.50 |
Ours | ResNet-50 | 78.57 | 65.43 | 51.18 | 51.31 | 62.71 | 61.84 |
Methods | Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|---|
ICID | ResNet-18 | 54.26 | 51.17 | 47.48 | 46.44 | 54.85 | 50.84 |
DFA | ResNet-18 | 35.66 | 45.82 | 34.63 | 36.88 | 62.53 | 43.10 |
LPL | ResNet-18 | 67.44 | 62.91 | 48.39 | 49.82 | 54.51 | 56.61 |
DETN | ResNet-18 | 44.19 | 47.23 | 45.46 | 45.39 | 58.41 | 48.14 |
FTDNN | ResNet-18 | 58.91 | 59.15 | 47.02 | 48.58 | 55.29 | 53.79 |
ECAN | ResNet-18 | 44.19 | 60.56 | 43.26 | 46.15 | 62.52 | 51.34 |
CADA | ResNet-18 | 72.09 | 53.99 | 48.39 | 48.61 | 58.50 | 56.32 |
SAFN | ResNet-18 | 68.22 | 61.50 | 50.46 | 50.07 | 55.17 | 57.08 |
SWD | ResNet-18 | 77.52 | 59.15 | 50.69 | 51.84 | 56.56 | 59.15 |
Ours | ResNet-18 | 79.84 | 61.03 | 51.15 | 51.95 | 65.03 | 61.80 |
Methods | Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|---|
ICID | MobileNet V2 | 55.04 | 42.72 | 34.86 | 39.94 | 44.34 | 43.38 |
DFA | MobileNet V2 | 44.19 | 27.70 | 31.88 | 35.95 | 61.55 | 40.25 |
LPL | MobileNet V2 | 69.77 | 50.23 | 43.35 | 45.57 | 51.63 | 52.11 |
DETN | MobileNet V2 | 57.36 | 54.46 | 32.80 | 44.11 | 64.36 | 50.62 |
FTDNN | MobileNet V2 | 65.12 | 46.01 | 46.10 | 46.69 | 53.02 | 51.39 |
ECAN | MobileNet V2 | 71.32 | 56.40 | 37.61 | 45.34 | 64.00 | 54.93 |
CADA | MobileNet V2 | 70.54 | 45.07 | 40.14 | 46.72 | 54.93 | 51.48 |
SAFN | MobileNet V2 | 62.79 | 53.99 | 42.66 | 46.61 | 52.65 | 51.74 |
SWD | MobileNet V2 | 64.34 | 53.52 | 44.72 | 50.24 | 55.85 | 53.73 |
Ours | MobileNet V2 | 75.19 | 54.46 | 47.25 | 47.88 | 61.10 | 57.18 |
Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|
ResNet-50 | 75.87 | 54.30 | 54.49 | 54.82 | 62.09 | 59.51 |
ResNet-18 | 69.43 | 51.88 | 47.94 | 51.72 | 61.26 | 56.45 |
MobileNet V2 | 60.78 | 45.15 | 39.59 | 47.92 | 56.46 | 49.98 |
Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|
ResNet-50 | 65.41 | 57.93 | 47.04 | 47.26 | 57.87 | 55.10 |
ResNet-18 | 60.23 | 56.25 | 46.95 | 47.57 | 58.34 | 53.87 |
MobileNet V2 | 63.57 | 48.46 | 40.14 | 44.91 | 56.34 | 50.68 |
@article{chen2020cross,
title={Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchmark and Adversarial Graph Learning},
author={Chen, Tianshui and Pu, Tao and Wu, Hefeng and Xie, Yuan and Liu, Lingbo and Lin, Liang},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2021},
pages={1-1},
doi={10.1109/TPAMI.2021.3131222}
}
@inproceedings{xie2020adversarial,
title={Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition},
author={Xie, Yuan and Chen, Tianshui and Pu, Tao and Wu, Hefeng and Lin, Liang},
booktitle={Proceedings of the 28th ACM international conference on Multimedia},
year={2020}
}
For any questions, feel free to open an issue or contact us: