-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
6e87239
commit f59f827
Showing
3 changed files
with
126 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
import pytest | ||
import glob | ||
import os | ||
import re | ||
import numpy as np | ||
from PIL import Image | ||
|
||
from src import data_loader | ||
|
||
|
||
BASE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)),"..","..","data") | ||
|
||
def get_class_name(path): | ||
filename = os.path.basename(path) | ||
index_first_number = re.search(r'\d+', filename).start() | ||
return filename[:index_first_number] | ||
|
||
def count_classes(list_of_paths): | ||
counting_dict = dict.fromkeys(data_loader.classname_to_number_map.keys(), 0) | ||
for path in list_of_paths: | ||
counting_dict[get_class_name(path)] += 1 | ||
|
||
return counting_dict | ||
|
||
|
||
def test_data_sizes(): | ||
list_of_processed = glob.glob(os.path.join(BASE_DIR, "processed","*.jpg")) | ||
list_of_raw = glob.glob(os.path.join(BASE_DIR, "raw","*","*","*.jpg")) | ||
assert len(list_of_processed) == len(list_of_raw) | ||
|
||
class_count_in_processed = count_classes(list_of_processed) | ||
class_count_in_raw = count_classes(list_of_raw) | ||
for class_name in class_count_in_processed.keys(): | ||
assert class_count_in_processed[class_name] == class_count_in_raw[class_name] | ||
|
||
|
||
def test_image_size_and_values(): | ||
img = Image.open(os.path.join(BASE_DIR, "processed","beagle1.jpg")) | ||
assert img.getbands() == ("R","G","B") | ||
assert img.width == 509 | ||
assert img.height == 339 | ||
assert np.all(np.sum(np.sum(np.array(img),axis=0),axis=0) == [22650398, 20419741, 18473145]) | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
import pytest | ||
import os | ||
import glob | ||
import numpy as np | ||
from torchvision import transforms | ||
import torch | ||
from torch.utils.data import DataLoader | ||
|
||
from src import data_loader | ||
|
||
BASE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)),"..","..","data") | ||
Number_of_images = len(glob.glob(os.path.join(BASE_DIR, "raw","*","*","*.jpg"))) | ||
|
||
def test_classname_to_number_map(): | ||
classname_to_number_map = { | ||
"beagle" : 0, | ||
"bulldog" : 1, | ||
"dalmatian" : 2, | ||
"german-shepherd" : 3, | ||
"husky" : 4, | ||
"labrador-retriever" : 5, | ||
"poodle" : 6, | ||
"rottweiler" : 7, | ||
} | ||
|
||
assert data_loader.classname_to_number_map == classname_to_number_map | ||
|
||
|
||
@pytest.mark.parametrize("batch_size,validation_ratio,testing_ratio,target_size", | ||
[(10, 0.2, 0.1,(128,128)), | ||
(30, 0.3, 0.2,(128,128)), | ||
(100, 0.5, 0.1,(64,64))]) | ||
def test_data_loader(batch_size,validation_ratio,testing_ratio,target_size): | ||
train_loader, valid_loader, test_loader = data_loader.get_data(batch_size=batch_size, validation_ratio=validation_ratio, testing_ratio=testing_ratio, transform=transforms.Compose([transforms.ToTensor(), transforms.Resize(target_size, antialias=True)])) | ||
|
||
# Check type | ||
assert type(train_loader) == DataLoader | ||
assert type(valid_loader) == DataLoader | ||
assert type(test_loader) == DataLoader | ||
|
||
# Number of data in each loader | ||
assert len(train_loader.dataset) == int(Number_of_images * (1.0 - validation_ratio - testing_ratio)) | ||
assert len(valid_loader.dataset) == int(Number_of_images * validation_ratio) | ||
assert len(test_loader.dataset) == int(np.ceil(Number_of_images * testing_ratio)) | ||
|
||
# Batch size | ||
assert train_loader.batch_size == batch_size | ||
assert valid_loader.batch_size == batch_size | ||
assert test_loader.batch_size == 1 | ||
|
||
# Number of batches | ||
assert len(train_loader) == np.ceil(len(train_loader.dataset)/batch_size) | ||
assert len(valid_loader) == np.ceil(len(valid_loader.dataset)/batch_size) | ||
assert len(test_loader) == len(test_loader.dataset) | ||
|
||
# Iterators | ||
batch_counter = 0 | ||
for X,Y in train_loader: | ||
batch_counter+=1 | ||
if batch_counter == len(train_loader): # Skip the last since they are not the same size | ||
continue | ||
assert X.shape == torch.Size([batch_size, 3, target_size[0], target_size[1]]) | ||
assert torch.min(Y).item() >= 0 | ||
assert torch.max(Y).item() <= len(data_loader.classname_to_number_map) | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|