Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add linear regression functions #1063

Merged
merged 11 commits into from
Oct 13, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/query/functions/temporal/aggregation.go
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ package temporal
import (
"fmt"
"math"
"time"

"github.com/m3db/m3/src/query/executor/transform"
"github.com/m3db/m3/src/query/ts"
Expand Down Expand Up @@ -96,7 +97,7 @@ type aggNode struct {
aggFunc func([]float64) float64
}

func (a *aggNode) Process(datapoints ts.Datapoints) float64 {
func (a *aggNode) Process(datapoints ts.Datapoints, _ time.Time) float64 {
return a.aggFunc(datapoints.Values())
}

Expand Down
6 changes: 3 additions & 3 deletions src/query/functions/temporal/base.go
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ type baseOp struct {
// skipping lint check for a single operator type since we will be adding more
// nolint : unparam
func newBaseOp(args []interface{}, operatorType string, processorFn MakeProcessor) (baseOp, error) {
if operatorType != HoltWintersType {
if operatorType != HoltWintersType && operatorType != PredictLinearType {
if len(args) != 1 {
return emptyOp, fmt.Errorf("invalid number of args for %s: %d", operatorType, len(args))
}
Expand Down Expand Up @@ -320,7 +320,7 @@ func (c *baseNode) processSingleRequest(request processRequest) error {
flattenedValues = append(flattenedValues, dps[idx:]...)
}

newVal = c.processor.Process(flattenedValues)
newVal = c.processor.Process(flattenedValues, alignedTime)
}

builder.AppendValue(i, newVal)
Expand Down Expand Up @@ -360,7 +360,7 @@ func (c *baseNode) sweep(processedKeys []bool, maxBlocks int) {

// Processor is implemented by the underlying transforms
type Processor interface {
Process(values ts.Datapoints) float64
Process(values ts.Datapoints, evaluationTime time.Time) float64
}

// MakeProcessor is a way to create a transform
Expand Down
2 changes: 1 addition & 1 deletion src/query/functions/temporal/base_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ func (p processor) Init(op baseOp, controller *transform.Controller, opts transf
return &p
}

func (p *processor) Process(dps ts.Datapoints) float64 {
func (p *processor) Process(dps ts.Datapoints, _ time.Time) float64 {
vals := dps.Values()
sum := 0.0
for _, n := range vals {
Expand Down
3 changes: 2 additions & 1 deletion src/query/functions/temporal/functions.go
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ package temporal
import (
"fmt"
"math"
"time"

"github.com/m3db/m3/src/query/executor/transform"
"github.com/m3db/m3/src/query/ts"
Expand Down Expand Up @@ -79,7 +80,7 @@ type functionNode struct {
comparisonFunc comparisonFunc
}

func (f *functionNode) Process(datapoints ts.Datapoints) float64 {
func (f *functionNode) Process(datapoints ts.Datapoints, _ time.Time) float64 {
if len(datapoints) == 0 {
return math.NaN()
}
Expand Down
159 changes: 159 additions & 0 deletions src/query/functions/temporal/linear_regression.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
// Copyright (c) 2018 Uber Technologies, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

package temporal

import (
"fmt"
"math"
"time"

"github.com/m3db/m3/src/query/executor/transform"
"github.com/m3db/m3/src/query/ts"
)

const (
// PredictLinearType predicts the value of time series t seconds from now, based on the input series, using simple linear regression.
// PredictLinearType should only be used with gauges.
PredictLinearType = "predict_linear"

// DerivType calculates the per-second derivative of the time series, using simple linear regression.
// DerivType should only be used with gauges.
DerivType = "deriv"
)

type linearRegressionProcessor struct {
fn linearRegFn
isDeriv bool
}

func (l linearRegressionProcessor) Init(op baseOp, controller *transform.Controller, opts transform.Options) Processor {
return &linearRegressionNode{
op: op,
controller: controller,
timeSpec: opts.TimeSpec,
fn: l.fn,
isDeriv: l.isDeriv,
}
}

type linearRegFn func(float64, float64) float64

// NewLinearRegressionOp creates a new base temporal transform for linear regression functions
func NewLinearRegressionOp(args []interface{}, optype string) (transform.Params, error) {
var (
fn linearRegFn
isDeriv bool
)

switch optype {
case PredictLinearType:
if len(args) != 2 {
return emptyOp, fmt.Errorf("invalid number of args for %s: %d", PredictLinearType, len(args))
}

duration, ok := args[1].(float64)
if !ok {
return emptyOp, fmt.Errorf("unable to cast to scalar argument: %v for %s", args[1], PredictLinearType)
}

fn = func(slope, intercept float64) float64 {
return slope*duration + intercept
}

case DerivType:
fn = func(slope, _ float64) float64 {
return slope
}

isDeriv = true

default:
return nil, fmt.Errorf("unknown linear regression type: %s", optype)
}

l := linearRegressionProcessor{
fn: fn,
isDeriv: isDeriv,
}

return newBaseOp(args, optype, l)
}

type linearRegressionNode struct {
op baseOp
controller *transform.Controller
timeSpec transform.TimeSpec
fn linearRegFn
isDeriv bool
}

func (l linearRegressionNode) Process(dps ts.Datapoints, evaluationTime time.Time) float64 {
if dps.Len() < 2 {
return math.NaN()
}

slope, intercept := linearRegression(dps, evaluationTime, l.isDeriv)
return l.fn(slope, intercept)
}

// linearRegression performs a least-square linear regression analysis on the
// provided datapoints. It returns the slope, and the intercept value at the
// provided time. The algorithm we use comes from https://en.wikipedia.org/wiki/Simple_linear_regression.
func linearRegression(dps ts.Datapoints, interceptTime time.Time, isDeriv bool) (float64, float64) {
var (
n float64
sumTimeDiff, sumVals float64
sumTimeDiffVals, sumTimeDiffSquared float64
valueCount int
)

for _, dp := range dps {
if math.IsNaN(dp.Value) {
continue
}

if valueCount == 0 && isDeriv {
// set interceptTime as timestamp of first non-NaN dp
interceptTime = dp.Timestamp
}

valueCount++
timeDiff := float64(dp.Timestamp.Sub(interceptTime).Seconds())
n += 1.0
sumVals += dp.Value
sumTimeDiff += timeDiff
sumTimeDiffVals += timeDiff * dp.Value
sumTimeDiffSquared += timeDiff * timeDiff
}

// need at least 2 non-NaN values to calculate slope and intercept
if valueCount == 1 {
return math.NaN(), math.NaN()
}

covXY := sumTimeDiffVals - sumTimeDiff*sumVals/n
varX := sumTimeDiffSquared - sumTimeDiff*sumTimeDiff/n

slope := covXY / varX
intercept := sumVals/n - slope*sumTimeDiff/n

return slope, intercept
}
Loading