Skip to content

πŸ›  A lite C++ toolkit of awesome AI models with ONNXRuntime, NCNN, MNN and TNN. YOLOX, YOLOP, MODNet, YOLOR, NanoDet, YOLOX, SCRFD, YOLOX . MNN, NCNN, TNN, ONNXRuntime, CPU/GPU.

License

Notifications You must be signed in to change notification settings

lyh1977/lite.ai.toolkit

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

logo-v3

πŸ› Lite.Ai.ToolKit: A lite C++ toolkit of awesome AI models, such as Object Detection, Face Detection, Face Recognition, Segmentation, Matting, etc. See Model Zoo and ONNX Hub, MNN Hub, TNN Hub, NCNN Hub. [❀️ Star πŸŒŸπŸ‘†πŸ» this repo to support me if it does any helps to you, thanks ~ ]


English | δΈ­ζ–‡ζ–‡ζ‘£ | MacOS | Linux | Windows

Core Features πŸ‘πŸ‘‹

  • Simply and User friendly. Simply and Consistent syntax like lite::cv::Type::Class, see examples.
  • Minimum Dependencies. Only OpenCV and ONNXRuntime are required by default, see build.
  • Lots of Algorithm Modules. Contains almost 300+ C++ re-implementations and 500+ weights.

Citations πŸŽ‰πŸŽ‰

Consider to cite it as follows if you use Lite.Ai.ToolKit in your projects.

@misc{lite.ai.toolkit2021,
  title={lite.ai.toolkit: A lite C++ toolkit of awesome AI models.},
  url={https://github.com/DefTruth/lite.ai.toolkit},
  note={Open-source software available at https://github.com/DefTruth/lite.ai.toolkit},
  author={Yan Jun},
  year={2021}
}

About Training πŸ€“πŸ‘€

A high level Training and Evaluating Toolkit for Face Landmarks Detection is available at torchlm.

Downloads & RoadMap βœ…

Some prebuilt lite.ai.toolkit libs for MacOS(x64) and Linux(x64) are available, you can download the libs from the release links. Further, prebuilt libs for Windows(x64) and Android will be coming soon ~ Please, see issues#48 for more details of the prebuilt plan and refer to releases for more available prebuilt libs.

In Linux, in order to link the prebuilt libs, you need to export lite.ai.toolkit/lib to LD_LIBRARY_PATH first.

export LD_LIBRARY_PATH=YOUR-PATH-TO/lite.ai.toolkit/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=YOUR-PATH-TO/lite.ai.toolkit/lib:LIBRARY_PATH  # (may need)

Quick Setup πŸ‘€

To quickly setup lite.ai.toolkit, you can follow the CMakeLists.txt listed as belows. πŸ‘‡πŸ‘€

set(LITE_AI_DIR ${CMAKE_SOURCE_DIR}/lite.ai.toolkit)
include_directories(${LITE_AI_DIR}/include)
link_directories(${LITE_AI_DIR}/lib})
set(TOOLKIT_LIBS lite.ai.toolkit onnxruntime)
set(OpenCV_LIBS opencv_core opencv_imgcodecs opencv_imgproc opencv_video opencv_videoio)

add_executable(lite_yolov5 examples/test_lite_yolov5.cpp)
target_link_libraries(lite_yolov5 ${TOOLKIT_LIBS} ${OpenCV_LIBS})

Contents πŸ“–πŸ’‘

1. Quick Start 🌟🌟

Example0: Object Detection using YOLOv5. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/yolov5s.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_yolov5_1.jpg";
  std::string save_img_path = "../../../logs/test_lite_yolov5_1.jpg";

  auto *yolov5 = new lite::cv::detection::YoloV5(onnx_path); 
  std::vector<lite::types::Boxf> detected_boxes;
  cv::Mat img_bgr = cv::imread(test_img_path);
  yolov5->detect(img_bgr, detected_boxes);
  
  lite::utils::draw_boxes_inplace(img_bgr, detected_boxes);
  cv::imwrite(save_img_path, img_bgr);  
  
  delete yolov5;
}

2. Important Updates πŸ†•

Click here to see details of Important Updates!
Date Model C++ Paper Code Awesome Type
【2022/04/03】 MODNet link AAAI 2022 code matting
【2022/03/23】 PIPNtet link CVPR 2021 code face::align
【2022/01/19】 YOLO5Face link arXiv 2021 code face::detect
【2022/01/07】 SCRFD link CVPR 2021 code face::detect
【2021/12/27】 NanoDetPlus link blog code detection
【2021/12/08】 MGMatting link CVPR 2021 code matting
【2021/11/11】 YoloV5_V_6_0 link doi code detection
【2021/10/26】 YoloX_V_0_1_1 link arXiv 2021 code detection
【2021/10/02】 NanoDet link blog code detection
【2021/09/20】 RobustVideoMatting link WACV 2022 code matting
【2021/09/02】 YOLOP link arXiv 2021 code detection

3. Supported Models Matrix

  • / = not supported now.
  • βœ… = known work and official supported now.
  • βœ”οΈ = known work, but unofficial supported now.
  • ❔ = in my plan, but not coming soon, maybe a few months later.
Class Size Type Demo ONNXRuntime MNN NCNN TNN MacOS Linux Windows Android
YoloV5 28M detection demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
YoloV3 236M detection demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
TinyYoloV3 33M detection demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
YoloV4 176M detection demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
SSD 76M detection demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
SSDMobileNetV1 27M detection demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
YoloX 3.5M detection demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
TinyYoloV4VOC 22M detection demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
TinyYoloV4COCO 22M detection demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
YoloR 39M detection demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
ScaledYoloV4 270M detection demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
EfficientDet 15M detection demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
EfficientDetD7 220M detection demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
EfficientDetD8 322M detection demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
YOLOP 30M detection demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
NanoDet 1.1M detection demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
NanoDetPlus 4.5M detection demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
NanoDetEffi... 12M detection demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
YoloX_V_0_1_1 3.5M detection demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
YoloV5_V_6_0 7.5M detection demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
GlintArcFace 92M faceid demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
GlintCosFace 92M faceid demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
GlintPartialFC 170M faceid demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
FaceNet 89M faceid demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
FocalArcFace 166M faceid demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
FocalAsiaArcFace 166M faceid demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
TencentCurricularFace 249M faceid demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
TencentCifpFace 130M faceid demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
CenterLossFace 280M faceid demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
SphereFace 80M faceid demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
PoseRobustFace 92M faceid demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
NaivePoseRobustFace 43M faceid demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
MobileFaceNet 3.8M faceid demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
CavaGhostArcFace 15M faceid demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
CavaCombinedFace 250M faceid demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
MobileSEFocalFace 4.5M faceid demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
RobustVideoMatting 14M matting demo βœ… βœ… / βœ… βœ… βœ”οΈ βœ”οΈ ❔
MGMatting 113M matting demo βœ… βœ… / βœ… βœ… βœ”οΈ βœ”οΈ /
MODNet 24M matting demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
MODNetDyn 24M matting demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
BackgroundMattingV2 20M matting demo βœ… βœ… / βœ… βœ… βœ”οΈ βœ”οΈ /
BackgroundMattingV2Dyn 20M matting demo βœ… / / / βœ… βœ”οΈ βœ”οΈ /
UltraFace 1.1M face::detect demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
RetinaFace 1.6M face::detect demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
FaceBoxes 3.8M face::detect demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
FaceBoxesV2 3.8M face::detect demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
SCRFD 2.5M face::detect demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
YOLO5Face 4.8M face::detect demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
PFLD 1.0M face::align demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
PFLD98 4.8M face::align demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
MobileNetV268 9.4M face::align demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
MobileNetV2SE68 11M face::align demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
PFLD68 2.8M face::align demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
FaceLandmark1000 2.0M face::align demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
PIPNet98 44.0M face::align demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
PIPNet68 44.0M face::align demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
PIPNet29 44.0M face::align demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
PIPNet19 44.0M face::align demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
FSANet 1.2M face::pose demo βœ… βœ… / βœ… βœ… βœ”οΈ βœ”οΈ ❔
AgeGoogleNet 23M face::attr demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
GenderGoogleNet 23M face::attr demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
EmotionFerPlus 33M face::attr demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
VGG16Age 514M face::attr demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
VGG16Gender 512M face::attr demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
SSRNet 190K face::attr demo βœ… βœ… / βœ… βœ… βœ”οΈ βœ”οΈ ❔
EfficientEmotion7 15M face::attr demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
EfficientEmotion8 15M face::attr demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
MobileEmotion7 13M face::attr demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
ReXNetEmotion7 30M face::attr demo βœ… βœ… / βœ… βœ… βœ”οΈ βœ”οΈ /
EfficientNetLite4 49M classification demo βœ… βœ… / βœ… βœ… βœ”οΈ βœ”οΈ /
ShuffleNetV2 8.7M classification demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
DenseNet121 30.7M classification demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
GhostNet 20M classification demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
HdrDNet 13M classification demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
IBNNet 97M classification demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
MobileNetV2 13M classification demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
ResNet 44M classification demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
ResNeXt 95M classification demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
DeepLabV3ResNet101 232M segmentation demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
FCNResNet101 207M segmentation demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ /
FastStyleTransfer 6.4M style demo βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ ❔
Colorizer 123M colorization demo βœ… βœ… / βœ… βœ… βœ”οΈ βœ”οΈ /
SubPixelCNN 234K resolution demo βœ… βœ… / βœ… βœ… βœ”οΈ βœ”οΈ ❔
SubPixelCNN 234K resolution demo βœ… βœ… / βœ… βœ… βœ”οΈ βœ”οΈ ❔
InsectDet 27M detection demo βœ… βœ… / βœ… βœ… βœ”οΈ βœ”οΈ ❔
InsectID 22M classification demo βœ… βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ
PlantID 30M classification demo βœ… βœ… βœ… βœ… βœ… βœ… βœ”οΈ βœ”οΈ
YOLOv5BlazeFace 3.4M face::detect demo βœ… βœ… / / βœ… βœ”οΈ βœ”οΈ ❔
YoloV5_V_6_1 7.5M detection demo βœ… βœ… / / βœ… βœ”οΈ βœ”οΈ ❔

4. Build Docs.

  • MacOS: Build the shared lib of Lite.Ai.ToolKit for MacOS from sources. Note that Lite.Ai.ToolKit uses onnxruntime as default backend, for the reason that onnxruntime supports the most of onnx's operators.
    git clone --depth=1 https://github.com/DefTruth/lite.ai.toolkit.git  # latest
    cd lite.ai.toolkit && sh ./build.sh  # On MacOS, you can use the built OpenCV, ONNXRuntime, MNN, NCNN and TNN libs in this repo.
πŸ’‘ Linux and Windows.

Linux and Windows.

⚠️ Lite.Ai.ToolKit is not directly support Linux and Windows now. For Linux and Windows, you need to build or download(if have official builts) the shared libs of OpenCV、ONNXRuntime and any other Engines(like MNN, NCNN, TNN) firstly, then put the headers into the specific directories or just let these directories unchange(use the headers offer by this repo, the header file of the dependent library of this project is directly copied from the corresponding official library). However, the dynamic libraries under different operating systems need to be recompiled or downloaded. MacOS users can directly use the dynamic libraries of each dependent library provided by this project:

  • lite.ai.toolkit/opencv2
      cp -r you-path-to-downloaded-or-built-opencv/include/opencv4/opencv2 lite.ai.toolkit/opencv2
  • lite.ai.toolkit/onnxruntime
      cp -r you-path-to-downloaded-or-built-onnxruntime/include/onnxruntime lite.ai.toolkit/onnxruntime
  • lite.ai.toolkit/MNN
      cp -r you-path-to-downloaded-or-built-MNN/include/MNN lite.ai.toolkit/MNN
  • lite.ai.toolkit/ncnn
      cp -r you-path-to-downloaded-or-built-ncnn/include/ncnn lite.ai.toolkit/ncnn
  • lite.ai.toolkit/tnn
      cp -r you-path-to-downloaded-or-built-TNN/include/tnn lite.ai.toolkit/tnn

and put the libs into lite.ai.toolkit/lib/(linux|windows) directory. Please reference the build-docs1 for third_party.

  • lite.ai.toolkit/lib/(linux|windows)
      cp you-path-to-downloaded-or-built-opencv/lib/*opencv* lite.ai.toolkit/lib/(linux|windows)/
      cp you-path-to-downloaded-or-built-onnxruntime/lib/*onnxruntime* lite.ai.toolkit/lib/(linux|windows)/
      cp you-path-to-downloaded-or-built-MNN/lib/*MNN* lite.ai.toolkit/lib/(linux|windows)/
      cp you-path-to-downloaded-or-built-ncnn/lib/*ncnn* lite.ai.toolkit/lib/(linux|windows)/
      cp you-path-to-downloaded-or-built-TNN/lib/*TNN* lite.ai.toolkit/lib/(linux|windows)/

Note, your also need to install ffmpeg(<=4.2.2) in Linux to support the opencv videoio module. See issue#203. In MacOS, ffmpeg4.2.2 was been package into lite.ai.toolkit, thus, no installation need in OSX. In Windows, ffmpeg was been package into opencv dll prebuilt by the team of opencv. Please make sure -DWITH_FFMPEG=ON and check the configuration info when building opencv.

  • first, build ffmpeg(<=4.2.2) from source.
git clone --depth=1 https://git.ffmpeg.org/ffmpeg.git -b n4.2.2
cd ffmpeg
./configure --enable-shared --disable-x86asm --prefix=/usr/local/opt/ffmpeg --disable-static
make -j8
make install
  • then, build opencv with -DWITH_FFMPEG=ON, just like
#!/bin/bash

mkdir build
cd build

cmake .. \
  -D CMAKE_BUILD_TYPE=Release \
  -D CMAKE_INSTALL_PREFIX=your-path-to-custom-dir \
  -D BUILD_TESTS=OFF \
  -D BUILD_PERF_TESTS=OFF \
  -D BUILD_opencv_python3=OFF \
  -D BUILD_opencv_python2=OFF \
  -D BUILD_SHARED_LIBS=ON \
  -D BUILD_opencv_apps=OFF \
  -D WITH_FFMPEG=ON 
  
make -j8
make install
cd ..

after built opencv, you can follow the steps to build lite.ai.toolkit.

  • Windows: You can reference to issue#6

  • Linux: The Docs and Docker image for Linux will be coming soon ~ issue#2

  • Happy News !!! : πŸš€ You can download the latest ONNXRuntime official built libs of Windows, Linux, MacOS and Arm !!! Both CPU and GPU versions are available. No more attentions needed pay to build it from source. Download the official built libs from v1.8.1. I have used version 1.7.0 for Lite.Ai.ToolKit now, you can download it from v1.7.0, but version 1.8.1 should also work, I guess ~ πŸ™ƒπŸ€ͺπŸ€. For OpenCV, try to build from source(Linux) or down load the official built(Windows) from OpenCV 4.5.3. Then put the includes and libs into specific directory of Lite.Ai.ToolKit.

  • GPU Compatibility for Windows: See issue#10.

  • GPU Compatibility for Linux: See issue#97.

πŸ”‘οΈ How to link Lite.Ai.ToolKit? * To link Lite.Ai.ToolKit, you can follow the CMakeLists.txt listed belows.
cmake_minimum_required(VERSION 3.10)
project(lite.ai.toolkit.demo)

set(CMAKE_CXX_STANDARD 11)

# setting up lite.ai.toolkit
set(LITE_AI_DIR ${CMAKE_SOURCE_DIR}/lite.ai.toolkit)
set(LITE_AI_INCLUDE_DIR ${LITE_AI_DIR}/include)
set(LITE_AI_LIBRARY_DIR ${LITE_AI_DIR}/lib)
include_directories(${LITE_AI_INCLUDE_DIR})
link_directories(${LITE_AI_LIBRARY_DIR})

set(OpenCV_LIBS
        opencv_highgui
        opencv_core
        opencv_imgcodecs
        opencv_imgproc
        opencv_video
        opencv_videoio
        )
# add your executable
set(EXECUTABLE_OUTPUT_PATH ${CMAKE_SOURCE_DIR}/examples/build)

add_executable(lite_rvm examples/test_lite_rvm.cpp)
target_link_libraries(lite_rvm
        lite.ai.toolkit
        onnxruntime
        MNN  # need, if built lite.ai.toolkit with ENABLE_MNN=ON,  default OFF
        ncnn # need, if built lite.ai.toolkit with ENABLE_NCNN=ON, default OFF 
        TNN  # need, if built lite.ai.toolkit with ENABLE_TNN=ON,  default OFF 
        ${OpenCV_LIBS})  # link lite.ai.toolkit & other libs.
cd ./build/lite.ai.toolkit/lib && otool -L liblite.ai.toolkit.0.0.1.dylib 
liblite.ai.toolkit.0.0.1.dylib:
        @rpath/liblite.ai.toolkit.0.0.1.dylib (compatibility version 0.0.1, current version 0.0.1)
        @rpath/libopencv_highgui.4.5.dylib (compatibility version 4.5.0, current version 4.5.2)
        @rpath/libonnxruntime.1.7.0.dylib (compatibility version 0.0.0, current version 1.7.0)
        ...
cd ../ && tree .
β”œβ”€β”€ bin
β”œβ”€β”€ include
β”‚Β Β  β”œβ”€β”€ lite
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ backend.h
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ config.h
β”‚Β Β  β”‚Β Β  └── lite.h
β”‚Β Β  └── ort
└── lib
    └── liblite.ai.toolkit.0.0.1.dylib
  • Run the built examples:
cd ./build/lite.ai.toolkit/bin && ls -lh | grep lite
-rwxr-xr-x  1 root  staff   301K Jun 26 23:10 liblite.ai.toolkit.0.0.1.dylib
...
-rwxr-xr-x  1 root  staff   196K Jun 26 23:10 lite_yolov4
-rwxr-xr-x  1 root  staff   196K Jun 26 23:10 lite_yolov5
...
./lite_yolov5
LITEORT_DEBUG LogId: ../../../hub/onnx/cv/yolov5s.onnx
=============== Input-Dims ==============
...
detected num_anchors: 25200
generate_bboxes num: 66
Default Version Detected Boxes Num: 5

To link lite.ai.toolkit shared lib. You need to make sure that OpenCV and onnxruntime are linked correctly. A minimum example to show you how to link the shared lib of Lite.AI.ToolKit correctly for your own project can be found at CMakeLists.txt.

5. Model Zoo.

Lite.Ai.ToolKit contains 80+ AI models with 500+ frozen pretrained files now. Most of the files are converted by myself. You can use it through lite::cv::Type::Class syntax, such as lite::cv::detection::YoloV5. More details can be found at Examples for Lite.Ai.ToolKit. Note, for Google Drive, I can not upload all the *.onnx files because of the storage limitation (15G).

File Baidu Drive Google Drive Docker Hub Hub (Docs)
ONNX Baidu Drive code: 8gin Google Drive ONNX Docker v0.1.22.01.08 (28G), v0.1.22.02.02 (400M) ONNX Hub
MNN Baidu Drive code: 9v63 ❔ MNN Docker v0.1.22.01.08 (11G), v0.1.22.02.02 (213M) MNN Hub
NCNN Baidu Drive code: sc7f ❔ NCNN Docker v0.1.22.01.08 (9G), v0.1.22.02.02 (197M) NCNN Hub
TNN Baidu Drive code: 6o6k ❔ TNN Docker v0.1.22.01.08 (11G), v0.1.22.02.02 (217M) TNN Hub
  docker pull qyjdefdocker/lite.ai.toolkit-onnx-hub:v0.1.22.01.08  # (28G)
  docker pull qyjdefdocker/lite.ai.toolkit-mnn-hub:v0.1.22.01.08   # (11G)
  docker pull qyjdefdocker/lite.ai.toolkit-ncnn-hub:v0.1.22.01.08  # (9G)
  docker pull qyjdefdocker/lite.ai.toolkit-tnn-hub:v0.1.22.01.08   # (11G)
  docker pull qyjdefdocker/lite.ai.toolkit-onnx-hub:v0.1.22.02.02  # (400M) + YOLO5Face
  docker pull qyjdefdocker/lite.ai.toolkit-mnn-hub:v0.1.22.02.02   # (213M) + YOLO5Face
  docker pull qyjdefdocker/lite.ai.toolkit-ncnn-hub:v0.1.22.02.02  # (197M) + YOLO5Face
  docker pull qyjdefdocker/lite.ai.toolkit-tnn-hub:v0.1.22.02.02   # (217M) + YOLO5Face
❇️ Lite.Ai.ToolKit modules.

Namespace and Lite.Ai.ToolKit modules.

Namepace Details
lite::cv::detection Object Detection. one-stage and anchor-free detectors, YoloV5, YoloV4, SSD, etc. βœ…
lite::cv::classification Image Classification. DensNet, ShuffleNet, ResNet, IBNNet, GhostNet, etc. βœ…
lite::cv::faceid Face Recognition. ArcFace, CosFace, CurricularFace, etc. ❇️
lite::cv::face Face Analysis. detect, align, pose, attr, etc. ❇️
lite::cv::face::detect Face Detection. UltraFace, RetinaFace, FaceBoxes, PyramidBox, etc. ❇️
lite::cv::face::align Face Alignment. PFLD(106), FaceLandmark1000(1000 landmarks), PRNet, etc. ❇️
lite::cv::face::pose Head Pose Estimation. FSANet, etc. ❇️
lite::cv::face::attr Face Attributes. Emotion, Age, Gender. EmotionFerPlus, VGG16Age, etc. ❇️
lite::cv::segmentation Object Segmentation. Such as FCN, DeepLabV3, etc. ❇️ ️
lite::cv::style Style Transfer. Contains neural style transfer now, such as FastStyleTransfer. ⚠️
lite::cv::matting Image Matting. Object and Human matting. ❇️ ️
lite::cv::colorization Colorization. Make Gray image become RGB. ⚠️
lite::cv::resolution Super Resolution. ⚠️

Lite.Ai.ToolKit's Classes and Pretrained Files.

Correspondence between the classes in Lite.AI.ToolKit and pretrained model files can be found at lite.ai.toolkit.hub.onnx.md. For examples, the pretrained model files for lite::cv::detection::YoloV5 and lite::cv::detection::YoloX are listed as follows.

Class Pretrained ONNX Files Rename or Converted From (Repo) Size
lite::cv::detection::YoloV5 yolov5l.onnx yolov5 (πŸ”₯πŸ”₯πŸ’₯↑) 188Mb
lite::cv::detection::YoloV5 yolov5m.onnx yolov5 (πŸ”₯πŸ”₯πŸ’₯↑) 85Mb
lite::cv::detection::YoloV5 yolov5s.onnx yolov5 (πŸ”₯πŸ”₯πŸ’₯↑) 29Mb
lite::cv::detection::YoloV5 yolov5x.onnx yolov5 (πŸ”₯πŸ”₯πŸ’₯↑) 351Mb
lite::cv::detection::YoloX yolox_x.onnx YOLOX (πŸ”₯πŸ”₯!!↑) 378Mb
lite::cv::detection::YoloX yolox_l.onnx YOLOX (πŸ”₯πŸ”₯!!↑) 207Mb
lite::cv::detection::YoloX yolox_m.onnx YOLOX (πŸ”₯πŸ”₯!!↑) 97Mb
lite::cv::detection::YoloX yolox_s.onnx YOLOX (πŸ”₯πŸ”₯!!↑) 34Mb
lite::cv::detection::YoloX yolox_tiny.onnx YOLOX (πŸ”₯πŸ”₯!!↑) 19Mb
lite::cv::detection::YoloX yolox_nano.onnx YOLOX (πŸ”₯πŸ”₯!!↑) 3.5Mb

It means that you can load the the any one yolov5*.onnx and yolox_*.onnx according to your application through the same Lite.AI.ToolKit's classes, such as YoloV5, YoloX, etc.

auto *yolov5 = new lite::cv::detection::YoloV5("yolov5x.onnx");  // for server
auto *yolov5 = new lite::cv::detection::YoloV5("yolov5l.onnx"); 
auto *yolov5 = new lite::cv::detection::YoloV5("yolov5m.onnx");  
auto *yolov5 = new lite::cv::detection::YoloV5("yolov5s.onnx");  // for mobile device 
auto *yolox = new lite::cv::detection::YoloX("yolox_x.onnx");  
auto *yolox = new lite::cv::detection::YoloX("yolox_l.onnx");  
auto *yolox = new lite::cv::detection::YoloX("yolox_m.onnx");  
auto *yolox = new lite::cv::detection::YoloX("yolox_s.onnx");  
auto *yolox = new lite::cv::detection::YoloX("yolox_tiny.onnx");  
auto *yolox = new lite::cv::detection::YoloX("yolox_nano.onnx");  // 3.5Mb only !
πŸ”‘οΈ How to download Model Zoo from Docker Hub?
  • Firstly, pull the image from docker hub.
    docker pull qyjdefdocker/lite.ai.toolkit-mnn-hub:v0.1.22.01.08 # (11G)
    docker pull qyjdefdocker/lite.ai.toolkit-ncnn-hub:v0.1.22.01.08 # (9G)
    docker pull qyjdefdocker/lite.ai.toolkit-tnn-hub:v0.1.22.01.08 # (11G)
    docker pull qyjdefdocker/lite.ai.toolkit-onnx-hub:v0.1.22.01.08 # (28G)
  • Secondly, run the container with local share dir using docker run -idt xxx. A minimum example will show you as follows.
    • make a share dir in your local device.
    mkdir share # any name is ok.
    • write run_mnn_docker_hub.sh script like:
    #!/bin/bash  
    PORT1=6072
    PORT2=6084
    SERVICE_DIR=/Users/xxx/Desktop/your-path-to/share
    CONRAINER_DIR=/home/hub/share
    CONRAINER_NAME=mnn_docker_hub_d
    
    docker run -idt -p ${PORT2}:${PORT1} -v ${SERVICE_DIR}:${CONRAINER_DIR} --shm-size=16gb --name ${CONRAINER_NAME} qyjdefdocker/lite.ai.toolkit-mnn-hub:v0.1.22.01.08
    
  • Finally, copy the model weights from /home/hub/mnn/cv to your local share dir.
    # activate mnn docker.
    sh ./run_mnn_docker_hub.sh
    docker exec -it mnn_docker_hub_d /bin/bash
    # copy the models to the share dir.
    cd /home/hub 
    cp -rf mnn/cv share/

Model Hubs

The pretrained and converted ONNX files provide by lite.ai.toolkit are listed as follows. Also, see Model Zoo and ONNX Hub, MNN Hub, TNN Hub, NCNN Hub for more details.

πŸ”‘οΈ ONNX Model Hub

Object Detection.

Class Pretrained ONNX Files Rename or Converted From (Repo) Size
lite::cv::detection::YoloV5 yolov5l.onnx yolov5 188Mb
lite::cv::detection::YoloV5 yolov5m.onnx yolov5 85Mb
lite::cv::detection::YoloV5 yolov5s.onnx yolov5 29Mb
lite::cv::detection::YoloV5 yolov5x.onnx yolov5 351Mb
lite::cv::detection::YoloX yolox_x.onnx YOLOX 378Mb
lite::cv::detection::YoloX yolox_l.onnx YOLOX 207Mb
lite::cv::detection::YoloX yolox_m.onnx YOLOX 97Mb
lite::cv::detection::YoloX yolox_s.onnx YOLOX 34Mb
lite::cv::detection::YoloX yolox_tiny.onnx YOLOX 19Mb
lite::cv::detection::YoloX yolox_nano.onnx YOLOX 3.5Mb
lite::cv::detection::YoloV3 yolov3-10.onnx onnx-models 236Mb
lite::cv::detection::TinyYoloV3 tiny-yolov3-11.onnx onnx-models 33Mb
lite::cv::detection::YoloV4 voc-mobilenetv2-yolov4-640.onnx YOLOv4... 176Mb
lite::cv::detection::YoloV4 voc-mobilenetv2-yolov4-416.onnx YOLOv4... 176Mb
lite::cv::detection::SSD ssd-10.onnx onnx-models 76Mb
lite::cv::detection::YoloR yolor-d6-1280-1280.onnx yolor 667Mb
lite::cv::detection::YoloR yolor-d6-640-640.onnx yolor 601Mb
lite::cv::detection::YoloR yolor-d6-320-320.onnx yolor 584Mb
lite::cv::detection::YoloR yolor-e6-1280-1280.onnx yolor 530Mb
lite::cv::detection::YoloR yolor-e6-640-640.onnx yolor 464Mb
lite::cv::detection::YoloR yolor-e6-320-320.onnx yolor 448Mb
lite::cv::detection::YoloR yolor-p6-1280-1280.onnx yolor 214Mb
lite::cv::detection::YoloR yolor-p6-640-640.onnx yolor 160Mb
lite::cv::detection::YoloR yolor-p6-320-320.onnx yolor 147Mb
lite::cv::detection::YoloR yolor-w6-1280-1280.onnx yolor 382Mb
lite::cv::detection::YoloR yolor-w6-640-640.onnx yolor 324Mb
lite::cv::detection::YoloR yolor-w6-320-320.onnx yolor 309Mb
lite::cv::detection::YoloR yolor-ssss-s2d-1280-1280.onnx yolor 90Mb
lite::cv::detection::YoloR yolor-ssss-s2d-640-640.onnx yolor 49Mb
lite::cv::detection::YoloR yolor-ssss-s2d-320-320.onnx yolor 39Mb
lite::cv::detection::TinyYoloV4VOC yolov4_tiny_weights_voc.onnx yolov4-tiny... 23Mb
lite::cv::detection::TinyYoloV4VOC yolov4_tiny_weights_voc_SE.onnx yolov4-tiny... 23Mb
lite::cv::detection::TinyYoloV4VOC yolov4_tiny_weights_voc_CBAM.onnx yolov4-tiny... 23Mb
lite::cv::detection::TinyYoloV4VOC yolov4_tiny_weights_voc_ECA.onnx yolov4-tiny... 23Mb
lite::cv::detection::TinyYoloV4COCO yolov4_tiny_weights_coco.onnx yolov4-tiny... 23Mb
lite::cv::detection::ScaledYoloV4 ScaledYoloV4_yolov4-p5-1280-1280.onnx ScaledYOLOv4 270Mb
lite::cv::detection::ScaledYoloV4 ScaledYoloV4_yolov4-p5-640-640.onnx ScaledYOLOv4 270Mb
lite::cv::detection::ScaledYoloV4 ScaledYoloV4_yolov4-p5-320-320.onnx ScaledYOLOv4 270Mb
lite::cv::detection::ScaledYoloV4 ScaledYoloV4_yolov4-p6-1280-1280.onnx ScaledYOLOv4 487Mb
lite::cv::detection::ScaledYoloV4 ScaledYoloV4_yolov4-p6-640-640.onnx ScaledYOLOv4 487Mb
lite::cv::detection::ScaledYoloV4 ScaledYoloV4_yolov4-p6-320-320.onnx ScaledYOLOv4 487Mb
lite::cv::detection::ScaledYoloV4 ScaledYoloV4_yolov4-p7-1280-1280.onnx ScaledYOLOv4 1.1Gb
lite::cv::detection::ScaledYoloV4 ScaledYoloV4_yolov4-p7-640-640.onnx ScaledYOLOv4 1.1Gb
lite::cv::detection::ScaledYoloV4 ScaledYoloV4_yolov4-p5_-1280-1280.onnx ScaledYOLOv4 270Mb
lite::cv::detection::ScaledYoloV4 ScaledYoloV4_yolov4-p5_-640-640.onnx ScaledYOLOv4 270Mb
lite::cv::detection::ScaledYoloV4 ScaledYoloV4_yolov4-p5_-320-320.onnx ScaledYOLOv4 270Mb
lite::cv::detection::ScaledYoloV4 ScaledYoloV4_yolov4-p6_-1280-1280.onnx ScaledYOLOv4 487Mb
lite::cv::detection::ScaledYoloV4 ScaledYoloV4_yolov4-p6_-640-640.onnx ScaledYOLOv4 487Mb
lite::cv::detection::ScaledYoloV4 ScaledYoloV4_yolov4-p6_-320-320.onnx ScaledYOLOv4 487Mb
lite::cv::detection::EfficientDet efficientdet-d0.onnx ...EfficientDet... 15Mb
lite::cv::detection::EfficientDet efficientdet-d1.onnx ...EfficientDet... 26Mb
lite::cv::detection::EfficientDet efficientdet-d2.onnx ...EfficientDet... 32Mb
lite::cv::detection::EfficientDet efficientdet-d3.onnx ...EfficientDet... 49Mb
lite::cv::detection::EfficientDet efficientdet-d4.onnx ...EfficientDet... 85Mb
lite::cv::detection::EfficientDet efficientdet-d5.onnx ...EfficientDet... 138Mb
lite::cv::detection::EfficientDet efficientdet-d6.onnx ...EfficientDet... 220Mb
lite::cv::detection::EfficientDetD7 efficientdet-d7.onnx ...EfficientDet... 220Mb
lite::cv::detection::EfficientDetD8 efficientdet-d8.onnx ...EfficientDet... 322Mb
lite::cv::detection::YOLOP yolop-1280-1280.onnx YOLOP 30Mb
lite::cv::detection::YOLOP yolop-640-640.onnx YOLOP 30Mb
lite::cv::detection::YOLOP yolop-320-320.onnx YOLOP 30Mb
lite::cv::detection::NanoDet nanodet_m_0.5x.onnx nanodet 1.1Mb
lite::cv::detection::NanoDet nanodet_m.onnx nanodet 3.6Mb
lite::cv::detection::NanoDet nanodet_m_1.5x.onnx nanodet 7.9Mb
lite::cv::detection::NanoDet nanodet_m_1.5x_416.onnx nanodet 7.9Mb
lite::cv::detection::NanoDet nanodet_m_416.onnx nanodet 3.6Mb
lite::cv::detection::NanoDet nanodet_g.onnx nanodet 14Mb
lite::cv::detection::NanoDet nanodet_t.onnx nanodet 5.1Mb
lite::cv::detection::NanoDet nanodet-RepVGG-A0_416.onnx nanodet 26Mb
lite::cv::detection::NanoDetEfficientNetLite nanodet-EfficientNet-Lite0_320.onnx nanodet 12Mb
lite::cv::detection::NanoDetEfficientNetLite nanodet-EfficientNet-Lite1_416.onnx nanodet 15Mb
lite::cv::detection::NanoDetEfficientNetLite nanodet-EfficientNet-Lite2_512.onnx nanodet 18Mb
lite::cv::detection::YoloX_V_0_1_1 yolox_x_v0.1.1.onnx YOLOX 378Mb
lite::cv::detection::YoloX_V_0_1_1 yolox_l_v0.1.1.onnx YOLOX 207Mb
lite::cv::detection::YoloX_V_0_1_1 yolox_m_v0.1.1.onnx YOLOX 97Mb
lite::cv::detection::YoloX_V_0_1_1 yolox_s_v0.1.1.onnx YOLOX 34Mb
lite::cv::detection::YoloX_V_0_1_1 yolox_tiny_v0.1.1.onnx YOLOX 19Mb
lite::cv::detection::YoloX_V_0_1_1 yolox_nano_v0.1.1.onnx YOLOX 3.5Mb
lite::cv::detection::YoloV5_V_6_0 yolov5l.640-640.v.6.0.onnx yolov5 178Mb
lite::cv::detection::YoloV5_V_6_0 yolov5m.640-640.v.6.0.onnx yolov5 81Mb
lite::cv::detection::YoloV5_V_6_0 yolov5s.640-640.v.6.0.onnx yolov5 28Mb
lite::cv::detection::YoloV5_V_6_0 yolov5x.640-640.v.6.0.onnx yolov5 331Mb
lite::cv::detection::YoloV5_V_6_0 yolov5n.640-640.v.6.0.onnx yolov5 7.5Mb
lite::cv::detection::YoloV5_V_6_0 yolov5l6.640-640.v.6.0.onnx yolov5 294Mb
lite::cv::detection::YoloV5_V_6_0 yolov5m6.640-640.v.6.0.onnx yolov5 128Mb
lite::cv::detection::YoloV5_V_6_0 yolov5s6.640-640.v.6.0.onnx yolov5 50Mb
lite::cv::detection::YoloV5_V_6_0 yolov5x6.640-640.v.6.0.onnx yolov5 538Mb
lite::cv::detection::YoloV5_V_6_0 yolov5n6.640-640.v.6.0.onnx yolov5 14Mb
lite::cv::detection::YoloV5_V_6_0 yolov5l6.1280-1280.v.6.0.onnx yolov5 294Mb
lite::cv::detection::YoloV5_V_6_0 yolov5m6.1280-1280.v.6.0.onnx yolov5 128Mb
lite::cv::detection::YoloV5_V_6_0 yolov5s6.1280-1280.v.6.0.onnx yolov5 50Mb
lite::cv::detection::YoloV5_V_6_0 yolov5x6.1280-1280.v.6.0.onnx yolov5 538Mb
lite::cv::detection::YoloV5_V_6_0 yolov5n6.1280-1280.v.6.0.onnx yolov5 14Mb
lite::cv::detection::NanoDetPlus nanodet-plus-m_320.onnx nanodet 4.5Mb
lite::cv::detection::NanoDetPlus nanodet-plus-m_416.onnx nanodet 4.5Mb
lite::cv::detection::NanoDetPlus nanodet-plus-m-1.5x_320.onnx nanodet 9.4Mb
lite::cv::detection::NanoDetPlus nanodet-plus-m-1.5x_416.onnx nanodet 9.4Mb
lite::cv::detection::InsectDet quarrying_insect_detector.onnx InsectID 22Mb

Classification.

Class Pretrained ONNX Files Rename or Converted From (Repo) Size
lite::cv::classification:EfficientNetLite4 efficientnet-lite4-11.onnx onnx-models 49Mb
lite::cv::classification::ShuffleNetV2 shufflenet-v2-10.onnx onnx-models 8.7Mb
lite::cv::classification::DenseNet121 densenet121.onnx torchvision 30Mb
lite::cv::classification::GhostNet ghostnet.onnx torchvision 20Mb
lite::cv::classification::HdrDNet hardnet.onnx torchvision 13Mb
lite::cv::classification::IBNNet ibnnet18.onnx torchvision 97Mb
lite::cv::classification::MobileNetV2 mobilenetv2.onnx torchvision 13Mb
lite::cv::classification::ResNet resnet18.onnx torchvision 44Mb
lite::cv::classification::ResNeXt resnext.onnx torchvision 95Mb
lite::cv::classification::InsectID quarrying_insect_identifier.onnx InsectID 27Mb
lite::cv::classification:PlantID quarrying_plantid_model.onnx PlantID 30Mb

Face Detection.

Class Pretrained ONNX Files Rename or Converted From (Repo) Size
lite::cv::face::detect::UltraFace ultraface-rfb-640.onnx Ultra-Light... 1.5Mb
lite::cv::face::detect::UltraFace ultraface-rfb-320.onnx Ultra-Light... 1.2Mb
lite::cv::face::detect::RetinaFace Pytorch_RetinaFace_resnet50.onnx ...Retinaface 104Mb
lite::cv::face::detect::RetinaFace Pytorch_RetinaFace_resnet50-640-640.onnx ...Retinaface 104Mb
lite::cv::face::detect::RetinaFace Pytorch_RetinaFace_resnet50-320-320.onnx ...Retinaface 104Mb
lite::cv::face::detect::RetinaFace Pytorch_RetinaFace_resnet50-720-1080.onnx ...Retinaface 104Mb
lite::cv::face::detect::RetinaFace Pytorch_RetinaFace_mobile0.25.onnx ...Retinaface 1.6Mb
lite::cv::face::detect::RetinaFace Pytorch_RetinaFace_mobile0.25-640-640.onnx ...Retinaface 1.6Mb
lite::cv::face::detect::RetinaFace Pytorch_RetinaFace_mobile0.25-320-320.onnx ...Retinaface 1.6Mb
lite::cv::face::detect::RetinaFace Pytorch_RetinaFace_mobile0.25-720-1080.onnx ...Retinaface 1.6Mb
lite::cv::face::detect::FaceBoxes FaceBoxes.onnx FaceBoxes 3.8Mb
lite::cv::face::detect::FaceBoxes FaceBoxes-640-640.onnx FaceBoxes 3.8Mb
lite::cv::face::detect::FaceBoxes FaceBoxes-320-320.onnx FaceBoxes 3.8Mb
lite::cv::face::detect::FaceBoxes FaceBoxes-720-1080.onnx FaceBoxes 3.8Mb
lite::cv::face::detect::SCRFD scrfd_500m_shape160x160.onnx SCRFD 2.5Mb
lite::cv::face::detect::SCRFD scrfd_500m_shape320x320.onnx SCRFD 2.5Mb
lite::cv::face::detect::SCRFD scrfd_500m_shape640x640.onnx SCRFD 2.5Mb
lite::cv::face::detect::SCRFD scrfd_500m_bnkps_shape160x160.onnx SCRFD 2.5Mb
lite::cv::face::detect::SCRFD scrfd_500m_bnkps_shape320x320.onnx SCRFD 2.5Mb
lite::cv::face::detect::SCRFD scrfd_500m_bnkps_shape640x640.onnx SCRFD 2.5Mb
lite::cv::face::detect::SCRFD scrfd_1g_shape160x160.onnx SCRFD 2.7Mb
lite::cv::face::detect::SCRFD scrfd_1g_shape320x320.onnx SCRFD 2.7Mb
lite::cv::face::detect::SCRFD scrfd_1g_shape640x640.onnx SCRFD 2.7Mb
lite::cv::face::detect::SCRFD scrfd_2.5g_shape160x160.onnx SCRFD 3.3Mb
lite::cv::face::detect::SCRFD scrfd_2.5g_shape320x320.onnx SCRFD 3.3Mb
lite::cv::face::detect::SCRFD scrfd_2.5g_shape640x640.onnx SCRFD 3.3Mb
lite::cv::face::detect::SCRFD scrfd_2.5g_bnkps_shape160x160.onnx SCRFD 3.3Mb
lite::cv::face::detect::SCRFD scrfd_2.5g_bnkps_shape320x320.onnx SCRFD 3.3Mb
lite::cv::face::detect::SCRFD scrfd_2.5g_bnkps_shape640x640.onnx SCRFD 3.3Mb
lite::cv::face::detect::SCRFD scrfd_10g_shape640x640.onnx SCRFD 16.9Mb
lite::cv::face::detect::SCRFD scrfd_10g_shape1280x1280.onnx SCRFD 16.9Mb
lite::cv::face::detect::SCRFD scrfd_10g_bnkps_shape640x640.onnx SCRFD 16.9Mb
lite::cv::face::detect::SCRFD scrfd_10g_bnkps_shape1280x1280.onnx SCRFD 16.9Mb
lite::cv::face::detect::YOLO5Face yolov5face-blazeface-640x640.onnx YOLO5Face 3.4Mb
lite::cv::face::detect::YOLO5Face yolov5face-l-640x640.onnx YOLO5Face 181Mb
lite::cv::face::detect::YOLO5Face yolov5face-m-640x640.onnx YOLO5Face 83Mb
lite::cv::face::detect::YOLO5Face yolov5face-n-0.5-320x320.onnx YOLO5Face 2.5Mb
lite::cv::face::detect::YOLO5Face yolov5face-n-0.5-640x640.onnx YOLO5Face 4.6Mb
lite::cv::face::detect::YOLO5Face yolov5face-n-640x640.onnx YOLO5Face 9.5Mb
lite::cv::face::detect::YOLO5Face yolov5face-s-640x640.onnx YOLO5Face 30Mb
lite::cv::face::detect::FaceBoxesV2 faceboxesv2-640x640.onnx FaceBoxesV2 4.0Mb

Face Alignment.

Class Pretrained ONNX Files Rename or Converted From (Repo) Size
lite::cv::face::align::PFLD pfld-106-lite.onnx pfld_106_... 1.0Mb
lite::cv::face::align::PFLD pfld-106-v3.onnx pfld_106_... 5.5Mb
lite::cv::face::align::PFLD pfld-106-v2.onnx pfld_106_... 5.0Mb
lite::cv::face::align::PFLD98 PFLD-pytorch-pfld.onnx PFLD... 4.8Mb
lite::cv::face::align::MobileNetV268 pytorch_face_landmarks_landmark_detection_56.onnx ...landmark 9.4Mb
lite::cv::face::align::MobileNetV2SE68 pytorch_face_landmarks_landmark_detection_56_se_external.onnx ...landmark 11Mb
lite::cv::face::align::PFLD68 pytorch_face_landmarks_pfld.onnx ...landmark 2.8Mb
lite::cv::face::align::FaceLandmarks1000 FaceLandmark1000.onnx FaceLandm... 2.0Mb
lite::cv::face::align::PIPNet98 pipnet_resnet18_10x19x32x256_aflw.onnx PIPNet 44.0Mb
lite::cv::face::align::PIPNet68 pipnet_resnet18_10x29x32x256_cofw.onnx PIPNet 44.0Mb
lite::cv::face::align::PIPNet29 pipnet_resnet18_10x68x32x256_300w.onnx PIPNet 44.0Mb
lite::cv::face::align::PIPNet19 pipnet_resnet18_10x98x32x256_wflw.onnx PIPNet 44.0Mb
lite::cv::face::align::PIPNet98 pipnet_resnet101_10x19x32x256_aflw.onnx PIPNet 150.0Mb
lite::cv::face::align::PIPNet68 pipnet_resnet101_10x29x32x256_cofw.onnx PIPNet 150.0Mb
lite::cv::face::align::PIPNet29 pipnet_resnet101_10x68x32x256_300w.onnx PIPNet 150.0Mb
lite::cv::face::align::PIPNet19 pipnet_resnet101_10x98x32x256_wflw.onnx PIPNet 150.0Mb

Face Attributes.

Class Pretrained ONNX Files Rename or Converted From (Repo) Size
lite::cv::face::attr::AgeGoogleNet age_googlenet.onnx onnx-models 23Mb
lite::cv::face::attr::GenderGoogleNet gender_googlenet.onnx onnx-models 23Mb
lite::cv::face::attr::EmotionFerPlus emotion-ferplus-7.onnx onnx-models 33Mb
lite::cv::face::attr::EmotionFerPlus emotion-ferplus-8.onnx onnx-models 33Mb
lite::cv::face::attr::VGG16Age vgg_ilsvrc_16_age_imdb_wiki.onnx onnx-models 514Mb
lite::cv::face::attr::VGG16Age vgg_ilsvrc_16_age_chalearn_iccv2015.onnx onnx-models 514Mb
lite::cv::face::attr::VGG16Gender vgg_ilsvrc_16_gender_imdb_wiki.onnx onnx-models 512Mb
lite::cv::face::attr::SSRNet ssrnet.onnx SSR_Net... 190Kb
lite::cv::face::attr::EfficientEmotion7 face-emotion-recognition-enet_b0_7.onnx face-emo... 15Mb
lite::cv::face::attr::EfficientEmotion8 face-emotion-recognition-enet_b0_8_best_afew.onnx face-emo... 15Mb
lite::cv::face::attr::EfficientEmotion8 face-emotion-recognition-enet_b0_8_best_vgaf.onnx face-emo... 15Mb
lite::cv::face::attr::MobileEmotion7 face-emotion-recognition-mobilenet_7.onnx face-emo... 13Mb
lite::cv::face::attr::ReXNetEmotion7 face-emotion-recognition-affectnet_7_vggface2_rexnet150.onnx face-emo... 30Mb

Face Recognition.

Class Pretrained ONNX Files Rename or Converted From (Repo) Size
lite::cv::faceid::GlintArcFace ms1mv3_arcface_r100.onnx insightface 248Mb
lite::cv::faceid::GlintArcFace ms1mv3_arcface_r50.onnx insightface 166Mb
lite::cv::faceid::GlintArcFace ms1mv3_arcface_r34.onnx insightface 130Mb
lite::cv::faceid::GlintArcFace ms1mv3_arcface_r18.onnx insightface 91Mb
lite::cv::faceid::GlintCosFace glint360k_cosface_r100.onnx insightface 248Mb
lite::cv::faceid::GlintCosFace glint360k_cosface_r50.onnx insightface 166Mb
lite::cv::faceid::GlintCosFace glint360k_cosface_r34.onnx insightface 130Mb
lite::cv::faceid::GlintCosFace glint360k_cosface_r18.onnx insightface 91Mb
lite::cv::faceid::GlintPartialFC partial_fc_glint360k_r100.onnx insightface 248Mb
lite::cv::faceid::GlintPartialFC partial_fc_glint360k_r50.onnx insightface 91Mb
lite::cv::faceid::FaceNet facenet_vggface2_resnet.onnx facenet... 89Mb
lite::cv::faceid::FaceNet facenet_casia-webface_resnet.onnx facenet... 89Mb
lite::cv::faceid::FocalArcFace focal-arcface-ms1m-ir152.onnx face.evoLVe... 269Mb
lite::cv::faceid::FocalArcFace focal-arcface-ms1m-ir50-epoch120.onnx face.evoLVe... 166Mb
lite::cv::faceid::FocalArcFace focal-arcface-ms1m-ir50-epoch63.onnx face.evoLVe... 166Mb
lite::cv::faceid::FocalAsiaArcFace focal-arcface-bh-ir50-asia.onnx face.evoLVe... 166Mb
lite::cv::faceid::TencentCurricularFace Tencent_CurricularFace_Backbone.onnx TFace 249Mb
lite::cv::faceid::TencentCifpFace Tencent_Cifp_BUPT_Balancedface_IR_34.onnx TFace 130Mb
lite::cv::faceid::CenterLossFace CenterLossFace_epoch_100.onnx center-loss... 280Mb
lite::cv::faceid::SphereFace sphere20a_20171020.onnx sphere... 86Mb
lite::cv::faceid::PoseRobustFace dream_cfp_res50_end2end.onnx DREAM 92Mb
lite::cv::faceid::PoseRobustFace dream_ijba_res18_end2end.onnx DREAM 43Mb
lite::cv::faceid:NaivePoseRobustFace dream_cfp_res50_naive.onnx DREAM 91Mb
lite::cv::faceid:NaivePoseRobustFace dream_ijba_res18_naive.onnx DREAM 43Mb
lite::cv::faceid:MobileFaceNet MobileFaceNet_Pytorch_068.onnx MobileFace... 3.8Mb
lite::cv::faceid:CavaGhostArcFace cavaface_GhostNet_x1.3_Arcface_Epoch_24.onnx cavaface... 15Mb
lite::cv::faceid:CavaCombinedFace cavaface_IR_SE_100_Combined_Epoch_24.onnx cavaface... 250Mb
lite::cv::faceid:MobileSEFocalFace face_recognition.pytorch_Mobilenet_se_focal_121000.onnx face_recog... 4.5Mb

Head Pose Estimation.

Class Pretrained ONNX Files Rename or Converted From (Repo) Size
lite::cv::face::pose::FSANet fsanet-var.onnx ...fsanet... 1.2Mb
lite::cv::face::pose::FSANet fsanet-1x1.onnx ...fsanet... 1.2Mb

Segmentation.

Class Pretrained ONNX Files Rename or Converted From (Repo) Size
lite::cv::segmentation::DeepLabV3ResNet101 deeplabv3_resnet101_coco.onnx torchvision 232Mb
lite::cv::segmentation::FCNResNet101 fcn_resnet101.onnx torchvision 207Mb

Style Transfer.

Class Pretrained ONNX Files Rename or Converted From (Repo) Size
lite::cv::style::FastStyleTransfer style-mosaic-8.onnx onnx-models 6.4Mb
lite::cv::style::FastStyleTransfer style-candy-9.onnx onnx-models 6.4Mb
lite::cv::style::FastStyleTransfer style-udnie-8.onnx onnx-models 6.4Mb
lite::cv::style::FastStyleTransfer style-udnie-9.onnx onnx-models 6.4Mb
lite::cv::style::FastStyleTransfer style-pointilism-8.onnx onnx-models 6.4Mb
lite::cv::style::FastStyleTransfer style-pointilism-9.onnx onnx-models 6.4Mb
lite::cv::style::FastStyleTransfer style-rain-princess-9.onnx onnx-models 6.4Mb
lite::cv::style::FastStyleTransfer style-rain-princess-8.onnx onnx-models 6.4Mb
lite::cv::style::FastStyleTransfer style-candy-8.onnx onnx-models 6.4Mb
lite::cv::style::FastStyleTransfer style-mosaic-9.onnx onnx-models 6.4Mb

Colorization.

Class Pretrained ONNX Files Rename or Converted From (Repo) Size
lite::cv::colorization::Colorizer eccv16-colorizer.onnx colorization 123Mb
lite::cv::colorization::Colorizer siggraph17-colorizer.onnx colorization 129Mb

Super Resolution.

Class Pretrained ONNX Files Rename or Converted From (Repo) Size
lite::cv::resolution::SubPixelCNN subpixel-cnn.onnx ...PIXEL... 234Kb

Matting.

Class Pretrained ONNX Files Rename or Converted From (Repo) Size
lite::cv::matting::RobustVideoMatting rvm_mobilenetv3_fp32.onnx RobustVideoMatting 14Mb
lite::cv::matting::RobustVideoMatting rvm_mobilenetv3_fp16.onnx RobustVideoMatting 7.2Mb
lite::cv::matting::RobustVideoMatting rvm_resnet50_fp32.onnx RobustVideoMatting 50Mb
lite::cv::matting::RobustVideoMatting rvm_resnet50_fp16.onnx RobustVideoMatting 100Mb
lite::cv::matting::MGMatting MGMatting-DIM-100k.onnx MGMatting 113Mb
lite::cv::matting::MGMatting MGMatting-RWP-100k.onnx MGMatting 113Mb
lite::cv::matting::MODNet modnet_photographic_portrait_matting-1024x1024.onnx MODNet 24Mb
lite::cv::matting::MODNet modnet_photographic_portrait_matting-1024x512.onnx MODNet 24Mb
lite::cv::matting::MODNet modnet_photographic_portrait_matting-256x256.onnx MODNet 24Mb
lite::cv::matting::MODNet modnet_photographic_portrait_matting-256x512.onnx MODNet 24Mb
lite::cv::matting::MODNet modnet_photographic_portrait_matting-512x1024.onnx MODNet 24Mb
lite::cv::matting::MODNet modnet_photographic_portrait_matting-512x256.onnx MODNet 24Mb
lite::cv::matting::MODNet modnet_photographic_portrait_matting-512x512.onnx MODNet 24Mb
lite::cv::matting::MODNet modnet_webcam_portrait_matting-1024x1024.onnx MODNet 24Mb
lite::cv::matting::MODNet modnet_webcam_portrait_matting-1024x512.onnx MODNet 24Mb
lite::cv::matting::MODNet modnet_webcam_portrait_matting-256x256.onnx MODNet 24Mb
lite::cv::matting::MODNet modnet_webcam_portrait_matting-256x512.onnx MODNet 24Mb
lite::cv::matting::MODNet modnet_webcam_portrait_matting-512x1024.onnx MODNet 24Mb
lite::cv::matting::MODNet modnet_webcam_portrait_matting-512x256.onnx MODNet 24Mb
lite::cv::matting::MODNet modnet_webcam_portrait_matting-512x512.onnx MODNet 24Mb
lite::cv::matting::MODNetDyn modnet_photographic_portrait_matting.onnx MODNet 24Mb
lite::cv::matting::MODNetDyn modnet_webcam_portrait_matting.onnx MODNet 24Mb
lite::cv::matting::BackgroundMattingV2 BGMv2_mobilenetv2-256x256-full.onnx BackgroundMattingV2 20Mb
lite::cv::matting::BackgroundMattingV2 BGMv2_mobilenetv2-512x512-full.onnx BackgroundMattingV2 20Mb
lite::cv::matting::BackgroundMattingV2 BGMv2_mobilenetv2-1080x1920-full.onnx BackgroundMattingV2 20Mb
lite::cv::matting::BackgroundMattingV2 BGMv2_mobilenetv2-2160x3840-full.onnx BackgroundMattingV2 20Mb
lite::cv::matting::BackgroundMattingV2 BGMv2_resnet50-1080x1920-full.onnx BackgroundMattingV2 20Mb
lite::cv::matting::BackgroundMattingV2 BGMv2_resnet50-2160x3840-full.onnx BackgroundMattingV2 20Mb
lite::cv::matting::BackgroundMattingV2 BGMv2_resnet101-2160x3840-full.onnx BackgroundMattingV2 154Mb
lite::cv::matting::BackgroundMattingV2Dyn BGMv2_mobilenetv2_4k_dynamic.onnx BackgroundMattingV2 157Mb
lite::cv::matting::BackgroundMattingV2Dyn BGMv2_mobilenetv2_hd_dynamic.onnx BackgroundMattingV2 230Mb

6. Examples.

More examples can be found at examples.

Example0: Object Detection using YOLOv5. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/yolov5s.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_yolov5_1.jpg";
  std::string save_img_path = "../../../logs/test_lite_yolov5_1.jpg";

  auto *yolov5 = new lite::cv::detection::YoloV5(onnx_path); 
  std::vector<lite::types::Boxf> detected_boxes;
  cv::Mat img_bgr = cv::imread(test_img_path);
  yolov5->detect(img_bgr, detected_boxes);
  
  lite::utils::draw_boxes_inplace(img_bgr, detected_boxes);
  cv::imwrite(save_img_path, img_bgr);  
  
  delete yolov5;
}

The output is:

Or you can use Newest πŸ”₯πŸ”₯ ! YOLO series's detector YOLOX or YoloR. They got the similar results.

More classes for general object detection (80 classes, COCO).

auto *detector = new lite::cv::detection::YoloX(onnx_path);  // Newest YOLO detector !!! 2021-07
auto *detector = new lite::cv::detection::YoloV4(onnx_path); 
auto *detector = new lite::cv::detection::YoloV3(onnx_path); 
auto *detector = new lite::cv::detection::TinyYoloV3(onnx_path); 
auto *detector = new lite::cv::detection::SSD(onnx_path); 
auto *detector = new lite::cv::detection::YoloV5(onnx_path); 
auto *detector = new lite::cv::detection::YoloR(onnx_path);  // Newest YOLO detector !!! 2021-05
auto *detector = new lite::cv::detection::TinyYoloV4VOC(onnx_path); 
auto *detector = new lite::cv::detection::TinyYoloV4COCO(onnx_path); 
auto *detector = new lite::cv::detection::ScaledYoloV4(onnx_path); 
auto *detector = new lite::cv::detection::EfficientDet(onnx_path); 
auto *detector = new lite::cv::detection::EfficientDetD7(onnx_path); 
auto *detector = new lite::cv::detection::EfficientDetD8(onnx_path); 
auto *detector = new lite::cv::detection::YOLOP(onnx_path);
auto *detector = new lite::cv::detection::NanoDet(onnx_path); // Super fast and tiny!
auto *detector = new lite::cv::detection::NanoDetPlus(onnx_path); // Super fast and tiny! 2021/12/25
auto *detector = new lite::cv::detection::NanoDetEfficientNetLite(onnx_path); // Super fast and tiny!
auto *detector = new lite::cv::detection::YoloV5_V_6_0(onnx_path); 
auto *detector = new lite::cv::detection::YoloV5_V_6_1(onnx_path); 
auto *detector = new lite::cv::detection::YoloX_V_0_1_1(onnx_path);  // Newest YOLO detector !!! 2021-07

Example1: Video Matting using RobustVideoMatting2021πŸ”₯πŸ”₯πŸ”₯. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/rvm_mobilenetv3_fp32.onnx";
  std::string video_path = "../../../examples/lite/resources/test_lite_rvm_0.mp4";
  std::string output_path = "../../../logs/test_lite_rvm_0.mp4";
  std::string background_path = "../../../examples/lite/resources/test_lite_matting_bgr.jpg";
  
  auto *rvm = new lite::cv::matting::RobustVideoMatting(onnx_path, 16); // 16 threads
  std::vector<lite::types::MattingContent> contents;
  
  // 1. video matting.
  cv::Mat background = cv::imread(background_path);
  rvm->detect_video(video_path, output_path, contents, false, 0.4f,
                    20, true, true, background);
  
  delete rvm;
}

The output is:


More classes for matting (image matting, video matting, trimap/mask-free, trimap/mask-based)

auto *matting = new lite::cv::matting::RobustVideoMatting:(onnx_path);  //  WACV 2022.
auto *matting = new lite::cv::matting::MGMatting(onnx_path); // CVPR 2021
auto *matting = new lite::cv::matting::MODNet(onnx_path); // AAAI 2022
auto *matting = new lite::cv::matting::MODNetDyn(onnx_path); // AAAI 2022 Dynamic Shape Inference.
auto *matting = new lite::cv::matting::BackgroundMattingV2(onnx_path); // CVPR 2020 
auto *matting = new lite::cv::matting::BackgroundMattingV2Dyn(onnx_path); // CVPR 2020 Dynamic Shape Inference.

Example2: 1000 Facial Landmarks Detection using FaceLandmarks1000. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/FaceLandmark1000.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_face_landmarks_0.png";
  std::string save_img_path = "../../../logs/test_lite_face_landmarks_1000.jpg";
    
  auto *face_landmarks_1000 = new lite::cv::face::align::FaceLandmark1000(onnx_path);

  lite::types::Landmarks landmarks;
  cv::Mat img_bgr = cv::imread(test_img_path);
  face_landmarks_1000->detect(img_bgr, landmarks);
  lite::utils::draw_landmarks_inplace(img_bgr, landmarks);
  cv::imwrite(save_img_path, img_bgr);
  
  delete face_landmarks_1000;
}

The output is:

More classes for face alignment (68 points, 98 points, 106 points, 1000 points)

auto *align = new lite::cv::face::align::PFLD(onnx_path);  // 106 landmarks, 1.0Mb only!
auto *align = new lite::cv::face::align::PFLD98(onnx_path);  // 98 landmarks, 4.8Mb only!
auto *align = new lite::cv::face::align::PFLD68(onnx_path);  // 68 landmarks, 2.8Mb only!
auto *align = new lite::cv::face::align::MobileNetV268(onnx_path);  // 68 landmarks, 9.4Mb only!
auto *align = new lite::cv::face::align::MobileNetV2SE68(onnx_path);  // 68 landmarks, 11Mb only!
auto *align = new lite::cv::face::align::FaceLandmark1000(onnx_path);  // 1000 landmarks, 2.0Mb only!
auto *align = new lite::cv::face::align::PIPNet98(onnx_path);  // 98 landmarks, CVPR2021!
auto *align = new lite::cv::face::align::PIPNet68(onnx_path);  // 68 landmarks, CVPR2021!
auto *align = new lite::cv::face::align::PIPNet29(onnx_path);  // 29 landmarks, CVPR2021!
auto *align = new lite::cv::face::align::PIPNet19(onnx_path);  // 19 landmarks, CVPR2021!

Example3: Colorization using colorization. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/eccv16-colorizer.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_colorizer_1.jpg";
  std::string save_img_path = "../../../logs/test_lite_eccv16_colorizer_1.jpg";
  
  auto *colorizer = new lite::cv::colorization::Colorizer(onnx_path);
  
  cv::Mat img_bgr = cv::imread(test_img_path);
  lite::types::ColorizeContent colorize_content;
  colorizer->detect(img_bgr, colorize_content);
  
  if (colorize_content.flag) cv::imwrite(save_img_path, colorize_content.mat);
  delete colorizer;
}

The output is:


More classes for colorization (gray to rgb)

auto *colorizer = new lite::cv::colorization::Colorizer(onnx_path);

Example4: Face Recognition using ArcFace. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/ms1mv3_arcface_r100.onnx";
  std::string test_img_path0 = "../../../examples/lite/resources/test_lite_faceid_0.png";
  std::string test_img_path1 = "../../../examples/lite/resources/test_lite_faceid_1.png";
  std::string test_img_path2 = "../../../examples/lite/resources/test_lite_faceid_2.png";

  auto *glint_arcface = new lite::cv::faceid::GlintArcFace(onnx_path);

  lite::types::FaceContent face_content0, face_content1, face_content2;
  cv::Mat img_bgr0 = cv::imread(test_img_path0);
  cv::Mat img_bgr1 = cv::imread(test_img_path1);
  cv::Mat img_bgr2 = cv::imread(test_img_path2);
  glint_arcface->detect(img_bgr0, face_content0);
  glint_arcface->detect(img_bgr1, face_content1);
  glint_arcface->detect(img_bgr2, face_content2);

  if (face_content0.flag && face_content1.flag && face_content2.flag)
  {
    float sim01 = lite::utils::math::cosine_similarity<float>(
        face_content0.embedding, face_content1.embedding);
    float sim02 = lite::utils::math::cosine_similarity<float>(
        face_content0.embedding, face_content2.embedding);
    std::cout << "Detected Sim01: " << sim  << " Sim02: " << sim02 << std::endl;
  }

  delete glint_arcface;
}

The output is:

Detected Sim01: 0.721159 Sim02: -0.0626267

More classes for face recognition (face id vector extract)

auto *recognition = new lite::cv::faceid::GlintCosFace(onnx_path);  // DeepGlint(insightface)
auto *recognition = new lite::cv::faceid::GlintArcFace(onnx_path);  // DeepGlint(insightface)
auto *recognition = new lite::cv::faceid::GlintPartialFC(onnx_path); // DeepGlint(insightface)
auto *recognition = new lite::cv::faceid::FaceNet(onnx_path);
auto *recognition = new lite::cv::faceid::FocalArcFace(onnx_path);
auto *recognition = new lite::cv::faceid::FocalAsiaArcFace(onnx_path);
auto *recognition = new lite::cv::faceid::TencentCurricularFace(onnx_path); // Tencent(TFace)
auto *recognition = new lite::cv::faceid::TencentCifpFace(onnx_path); // Tencent(TFace)
auto *recognition = new lite::cv::faceid::CenterLossFace(onnx_path);
auto *recognition = new lite::cv::faceid::SphereFace(onnx_path);
auto *recognition = new lite::cv::faceid::PoseRobustFace(onnx_path);
auto *recognition = new lite::cv::faceid::NaivePoseRobustFace(onnx_path);
auto *recognition = new lite::cv::faceid::MobileFaceNet(onnx_path); // 3.8Mb only !
auto *recognition = new lite::cv::faceid::CavaGhostArcFace(onnx_path);
auto *recognition = new lite::cv::faceid::CavaCombinedFace(onnx_path);
auto *recognition = new lite::cv::faceid::MobileSEFocalFace(onnx_path); // 4.5Mb only !

Example5: Face Detection using SCRFD 2021. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/scrfd_2.5g_bnkps_shape640x640.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_face_detector.jpg";
  std::string save_img_path = "../../../logs/test_lite_scrfd.jpg";
  
  auto *scrfd = new lite::cv::face::detect::SCRFD(onnx_path);
  
  std::vector<lite::types::BoxfWithLandmarks> detected_boxes;
  cv::Mat img_bgr = cv::imread(test_img_path);
  scrfd->detect(img_bgr, detected_boxes);
  
  lite::utils::draw_boxes_with_landmarks_inplace(img_bgr, detected_boxes);
  cv::imwrite(save_img_path, img_bgr);
  
  std::cout << "Default Version Done! Detected Face Num: " << detected_boxes.size() << std::endl;
  
  delete scrfd;
}

The output is:

More classes for face detection (super fast face detection)

auto *detector = new lite::face::detect::UltraFace(onnx_path);  // 1.1Mb only !
auto *detector = new lite::face::detect::FaceBoxes(onnx_path);  // 3.8Mb only ! 
auto *detector = new lite::face::detect::FaceBoxesv2(onnx_path);  // 4.0Mb only ! 
auto *detector = new lite::face::detect::RetinaFace(onnx_path);  // 1.6Mb only ! CVPR2020
auto *detector = new lite::face::detect::SCRFD(onnx_path);  // 2.5Mb only ! CVPR2021, Super fast and accurate!!
auto *detector = new lite::face::detect::YOLO5Face(onnx_path);  // 2021, Super fast and accurate!!

Example6: Segmentation using DeepLabV3ResNet101. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/deeplabv3_resnet101_coco.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_deeplabv3_resnet101.png";
  std::string save_img_path = "../../../logs/test_lite_deeplabv3_resnet101.jpg";

  auto *deeplabv3_resnet101 = new lite::cv::segmentation::DeepLabV3ResNet101(onnx_path, 16); // 16 threads

  lite::types::SegmentContent content;
  cv::Mat img_bgr = cv::imread(test_img_path);
  deeplabv3_resnet101->detect(img_bgr, content);

  if (content.flag)
  {
    cv::Mat out_img;
    cv::addWeighted(img_bgr, 0.2, content.color_mat, 0.8, 0., out_img);
    cv::imwrite(save_img_path, out_img);
    if (!content.names_map.empty())
    {
      for (auto it = content.names_map.begin(); it != content.names_map.end(); ++it)
      {
        std::cout << it->first << " Name: " << it->second << std::endl;
      }
    }
  }
  delete deeplabv3_resnet101;
}

The output is:

More classes for segmentation (human segmentation, instance segmentation)

auto *segment = new lite::cv::segmentation::FCNResNet101(onnx_path);
auto *segment = new lite::cv::segmentation::DeepLabV3ResNet101(onnx_path);

Example7: Age Estimation using SSRNet . Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/ssrnet.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_ssrnet.jpg";
  std::string save_img_path = "../../../logs/test_lite_ssrnet.jpg";

  lite::cv::face::attr::SSRNet *ssrnet = new lite::cv::face::attr::SSRNet(onnx_path);

  lite::types::Age age;
  cv::Mat img_bgr = cv::imread(test_img_path);
  ssrnet->detect(img_bgr, age);
  lite::utils::draw_age_inplace(img_bgr, age);
  cv::imwrite(save_img_path, img_bgr);
  std::cout << "Default Version Done! Detected SSRNet Age: " << age.age << std::endl;

  delete ssrnet;
}

The output is:

More classes for face attributes analysis (age, gender, emotion)

auto *attribute = new lite::cv::face::attr::AgeGoogleNet(onnx_path);  
auto *attribute = new lite::cv::face::attr::GenderGoogleNet(onnx_path); 
auto *attribute = new lite::cv::face::attr::EmotionFerPlus(onnx_path);
auto *attribute = new lite::cv::face::attr::VGG16Age(onnx_path);
auto *attribute = new lite::cv::face::attr::VGG16Gender(onnx_path);
auto *attribute = new lite::cv::face::attr::EfficientEmotion7(onnx_path); // 7 emotions, 15Mb only!
auto *attribute = new lite::cv::face::attr::EfficientEmotion8(onnx_path); // 8 emotions, 15Mb only!
auto *attribute = new lite::cv::face::attr::MobileEmotion7(onnx_path); // 7 emotions, 13Mb only!
auto *attribute = new lite::cv::face::attr::ReXNetEmotion7(onnx_path); // 7 emotions
auto *attribute = new lite::cv::face::attr::SSRNet(onnx_path); // age estimation, 190kb only!!!

Example8: 1000 Classes Classification using DenseNet. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/densenet121.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_densenet.jpg";

  auto *densenet = new lite::cv::classification::DenseNet(onnx_path);

  lite::types::ImageNetContent content;
  cv::Mat img_bgr = cv::imread(test_img_path);
  densenet->detect(img_bgr, content);
  if (content.flag)
  {
    const unsigned int top_k = content.scores.size();
    if (top_k > 0)
    {
      for (unsigned int i = 0; i < top_k; ++i)
        std::cout << i + 1
                  << ": " << content.labels.at(i)
                  << ": " << content.texts.at(i)
                  << ": " << content.scores.at(i)
                  << std::endl;
    }
  }
  delete densenet;
}

The output is:

More classes for image classification (1000 classes)

auto *classifier = new lite::cv::classification::EfficientNetLite4(onnx_path);  
auto *classifier = new lite::cv::classification::ShuffleNetV2(onnx_path); // 8.7Mb only!
auto *classifier = new lite::cv::classification::GhostNet(onnx_path);
auto *classifier = new lite::cv::classification::HdrDNet(onnx_path);
auto *classifier = new lite::cv::classification::IBNNet(onnx_path);
auto *classifier = new lite::cv::classification::MobileNetV2(onnx_path); // 13Mb only!
auto *classifier = new lite::cv::classification::ResNet(onnx_path); 
auto *classifier = new lite::cv::classification::ResNeXt(onnx_path);

Example9: Head Pose Estimation using FSANet. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/fsanet-var.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_fsanet.jpg";
  std::string save_img_path = "../../../logs/test_lite_fsanet.jpg";

  auto *fsanet = new lite::cv::face::pose::FSANet(onnx_path);
  cv::Mat img_bgr = cv::imread(test_img_path);
  lite::types::EulerAngles euler_angles;
  fsanet->detect(img_bgr, euler_angles);
  
  if (euler_angles.flag)
  {
    lite::utils::draw_axis_inplace(img_bgr, euler_angles);
    cv::imwrite(save_img_path, img_bgr);
    std::cout << "yaw:" << euler_angles.yaw << " pitch:" << euler_angles.pitch << " row:" << euler_angles.roll << std::endl;
  }
  delete fsanet;
}

The output is:

More classes for head pose estimation (euler angle, yaw, pitch, roll)

auto *pose = new lite::cv::face::pose::FSANet(onnx_path); // 1.2Mb only!

Example10: Style Transfer using FastStyleTransfer. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/style-candy-8.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_fast_style_transfer.jpg";
  std::string save_img_path = "../../../logs/test_lite_fast_style_transfer_candy.jpg";
  
  auto *fast_style_transfer = new lite::cv::style::FastStyleTransfer(onnx_path);
 
  lite::types::StyleContent style_content;
  cv::Mat img_bgr = cv::imread(test_img_path);
  fast_style_transfer->detect(img_bgr, style_content);

  if (style_content.flag) cv::imwrite(save_img_path, style_content.mat);
  delete fast_style_transfer;
}

The output is:


More classes for style transfer (neural style transfer, others)

auto *transfer = new lite::cv::style::FastStyleTransfer(onnx_path); // 6.4Mb only

7. License.

The code of Lite.Ai.ToolKit is released under the GPL-3.0 License.

8. References.

Many thanks to these following projects. All the Lite.AI.ToolKit's models are sourced from these repos.

Expand for More References.

9. Compilation Options.

In addition, MNN, NCNN and TNN support for some models will be added in the future, but due to operator compatibility and some other reasons, it is impossible to ensure that all models supported by ONNXRuntime C++ can run through MNN, NCNN and TNN. So, if you want to use all the models supported by this repo and don't care about the performance gap of 1~2ms, just let ONNXRuntime as default inference engine for this repo. However, you can follow the steps below if you want to build with MNN, NCNN or TNN support.

  • change the build.sh with DENABLE_MNN=ON,DENABLE_NCNN=ON or DENABLE_TNN=ON, such as
cd build && cmake \
  -DCMAKE_BUILD_TYPE=MinSizeRel \
  -DINCLUDE_OPENCV=ON \   # Whether to package OpenCV into lite.ai.toolkit, default ON; otherwise, you need to setup OpenCV yourself.
  -DENABLE_MNN=ON \       # Whether to build with MNN,  default OFF, only some models are supported now.
  -DENABLE_NCNN=OFF \     # Whether to build with NCNN, default OFF, only some models are supported now.
  -DENABLE_TNN=OFF \      # Whether to build with TNN,  default OFF, only some models are supported now.
  .. && make -j8
  • use the MNN, NCNN or TNN version interface, see demo, such as
auto *nanodet = new lite::mnn::cv::detection::NanoDet(mnn_path);
auto *nanodet = new lite::tnn::cv::detection::NanoDet(proto_path, model_path);
auto *nanodet = new lite::ncnn::cv::detection::NanoDet(param_path, bin_path);

10. Contribute

How to add your own models and become a contributor? See CONTRIBUTING.zh.md.

11. Many Thanks !!! πŸ€—πŸŽ‰πŸŽ‰

About

πŸ›  A lite C++ toolkit of awesome AI models with ONNXRuntime, NCNN, MNN and TNN. YOLOX, YOLOP, MODNet, YOLOR, NanoDet, YOLOX, SCRFD, YOLOX . MNN, NCNN, TNN, ONNXRuntime, CPU/GPU.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 94.7%
  • C 4.1%
  • Other 1.2%