Skip to content

lyh1977/PyTorch_YOLOv4

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOv4

This is PyTorch implementation of YOLOv4 which is based on ultralytics/yolov3.

development log

Expand

Pretrained Models & Comparison

Model Test Size APval AP50val AP75val APSval APMval APLval cfg weights
YOLOv4 672 47.7% 66.7% 52.1% 30.5% 52.6% 61.4% cfg weights
YOLOv4pacsp-s 672 36.6% 55.5% 39.6% 21.2% 41.1% 47.0% cfg weights
YOLOv4pacsp 672 47.2% 66.2% 51.6% 30.4% 52.3% 60.8% cfg weights
YOLOv4pacsp-x 672 49.3% 68.1% 53.6% 31.8% 54.5% 63.6% cfg weights
YOLOv4pacsp-s-mish 672 38.6% 57.7% 41.8% 22.3% 43.5% 49.3% cfg weights
YOLOv4pacsp-mish 672 48.1% 66.9% 52.3% 30.8% 53.4% 61.7% cfg weights
YOLOv4pacsp-x-mish 672 50.0% 68.5% 54.4% 32.9% 54.9% 64.0% cfg weights

Requirements

pip install -r requirements.txt

※ For running Mish models, please install https://github.com/thomasbrandon/mish-cuda

Training

python train.py --device 0 --batch-size 16 --img 640 640 --data coco.yaml --cfg cfg/yolov4-pacsp.cfg --weights '' --name yolov4-pacsp

Testing

python test.py --img 640 --conf 0.001 --batch 8 --device 0 --data coco.yaml --cfg cfg/yolov4-pacsp.cfg --weights weights/yolov4-pacsp.pt

Citation

@article{bochkovskiy2020yolov4,
  title={{YOLOv4}: Optimal Speed and Accuracy of Object Detection},
  author={Bochkovskiy, Alexey and Wang, Chien-Yao and Liao, Hong-Yuan Mark},
  journal={arXiv preprint arXiv:2004.10934},
  year={2020}
}
@inproceedings{wang2020cspnet,
  title={{CSPNet}: A New Backbone That Can Enhance Learning Capability of {CNN}},
  author={Wang, Chien-Yao and Mark Liao, Hong-Yuan and Wu, Yueh-Hua and Chen, Ping-Yang and Hsieh, Jun-Wei and Yeh, I-Hau},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
  pages={390--391},
  year={2020}
}

Acknowledgements

About

PyTorch implementation of YOLOv4

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.3%
  • Shell 1.7%