Skip to content

Commit

Permalink
[Paddle-TRT] add cast between int64 tensor and Paddle-TRT (PaddlePadd…
Browse files Browse the repository at this point in the history
…le#45547)

* Add cast between int64 tensor and Paddle-TRT
* Add Unit testing.
  • Loading branch information
zhoutianzi666 authored Dec 10, 2022
1 parent baffe5c commit 5f3aacf
Show file tree
Hide file tree
Showing 5 changed files with 326 additions and 16 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -253,6 +253,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
// problem, so we filter them out.
std::vector<std::string> params_not_shared;

auto *scope = param_scope();
// The node->inputs contains input tensors and parameters.
for (auto *x : node->inputs) {
input_names.insert(x->Name());
Expand All @@ -264,6 +265,21 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
x->outputs.size() <= 1) {
params_not_shared.push_back(x->Name());
}
// When TRT Engine's input is INT64, we need do some extra work.
// So we reserved a name for later use when casting INT64 -> INT32.
// We must check whether scope has had the same name var!
if (x->Var()->GetDataType() == framework::proto::VarType::INT64) {
std::string tmp_name = x->Name() + "_cast_to_INT32";
LOG(WARNING)
<< "tensorrt_subgraph's input named " << tmp_name
<< " having int64 dtype in pdmodel description, we will cast them to "
"int32 dtype to feed them into paddle-trt.";
PADDLE_ENFORCE_EQ(scope->FindVar(tmp_name),
nullptr,
platform::errors::InvalidArgument(
"The var name %s has exists in scope.", tmp_name));
scope->Var(tmp_name);
}
}

auto model_precision =
Expand All @@ -273,13 +289,18 @@ void TensorRtSubgraphPass::CreateTensorRTOp(

std::set<std::string> output_names;
std::set<std::string> output_names_with_id;
std::map<std::string, int> origin_name_output_dims;
std::map<std::string, int> origin_name_output_rank;
std::unordered_set<Node *> trt_outputs;
// record the origin output data type
std::vector<int> origin_outputs_dtype;
std::map<std::string, int> map_origin_outputs_dtype;
for (auto *x : node->outputs) {
output_names.insert(x->Name());
output_names_with_id.insert(x->Name() + std::to_string(x->id()));
origin_name_output_dims[x->Name()] = x->Var()->GetShape().size();
origin_name_output_rank[x->Name()] = x->Var()->GetShape().size();
trt_outputs.insert(x);
map_origin_outputs_dtype[x->Name()] =
static_cast<int>(x->Var()->GetDataType());
}

OutputProcess(
Expand Down Expand Up @@ -353,14 +374,34 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
// output_mapping help us copy the data from the renamed ITensor
// to Tensor.
std::vector<std::string> output_mapping;
std::vector<int> renamed_output_dims;
std::vector<int> renamed_output_rank;
for (auto name : output_names) {
PADDLE_ENFORCE_NE(output_name_map.count(name),
0,
platform::errors::PreconditionNotMet(
"The output_name_map should have %s", name));
output_mapping.push_back(output_name_map[name]);
renamed_output_dims.push_back(origin_name_output_dims[name]);
renamed_output_rank.push_back(origin_name_output_rank[name]);
origin_outputs_dtype.push_back(map_origin_outputs_dtype[name]);

// When TRT Engine's output is INT64, we need do some extra work.
// So we reserved a name for later use when casting INT32 -> INT64.
// We must check whether scope has had the same name var!
if (static_cast<framework::proto::VarType_Type>(
map_origin_outputs_dtype[name]) ==
framework::proto::VarType::INT64) {
std::string tmp_name = name + "_cast_to_INT64";
LOG(WARNING) << "tensorrt_subgraph's output named " << tmp_name
<< " having int64 dtype in pdmodel description, but in fact "
"it is int32 "
"dtype after executing this tensorrt_subgraph, so we "
"need cast them into int64.";
PADDLE_ENFORCE_EQ(scope->FindVar(tmp_name),
nullptr,
platform::errors::InvalidArgument(
"The var name %s has exists in scope.", tmp_name));
scope->Var(tmp_name);
}
}
PADDLE_ENFORCE_EQ(output_mapping.empty(),
false,
Expand All @@ -381,11 +422,12 @@ void TensorRtSubgraphPass::CreateTensorRTOp(

op_desc->SetBlockAttr("sub_block", new_block);
op_desc->SetAttr("subgraph", block_desc.Proto()->SerializeAsString());
op_desc->SetAttr("origin_outputs_dtype", origin_outputs_dtype);
op_desc->SetAttr("max_batch_size", max_batch_size);
op_desc->SetAttr("workspace_size", Get<int64_t>("workspace_size"));
op_desc->SetAttr("gpu_id", Get<int>("gpu_device_id"));
op_desc->SetAttr("output_name_mapping", output_mapping);
op_desc->SetAttr("origin_output_dims", renamed_output_dims);
op_desc->SetAttr("origin_output_rank", renamed_output_rank);
op_desc->SetAttr("parameters", params);
op_desc->SetAttr("allow_build_at_runtime", allow_build_at_runtime);
op_desc->SetAttr("shape_range_info_path", shape_range_info_path);
Expand Down Expand Up @@ -548,7 +590,6 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
LOG(INFO) << "Prepare TRT engine (Optimize model structure, Select OP "
"kernel etc). This process may cost a lot of time.";

auto *scope = param_scope();
framework::BlockDesc block_desc_temp(nullptr, block_desc.Proto());
std::unordered_set<std::string> param_set(params.begin(), params.end());
inference::Singleton<inference::tensorrt::OpConverter>::Global()
Expand Down
6 changes: 3 additions & 3 deletions paddle/fluid/inference/tensorrt/engine.h
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@ TRT_DT FluidDataType2TRT(FluidDT type) {
case FluidDT::VarType_Type_FP32:
return TRT_DT::kFLOAT;
case FluidDT::VarType_Type_INT32:
case FluidDT::VarType_Type_INT64:
return TRT_DT::kINT32;
case FluidDT::VarType_Type_FP16:
return TRT_DT::kHALF;
Expand All @@ -68,10 +69,9 @@ TRT_DT FluidDataType2TRT(FluidDT type) {
return TRT_DT::kBOOL;
#endif
default:
return TRT_DT::kINT32;
PADDLE_THROW(platform::errors::InvalidArgument(
"unknown fluid datatype in TRT op converter"));
}
PADDLE_THROW(platform::errors::InvalidArgument(
"unknown fluid datatype in TRT op converter"));
return TRT_DT::kINT32;
}

Expand Down
39 changes: 34 additions & 5 deletions paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -21,13 +21,13 @@
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/place.h"
#ifdef PADDLE_WITH_CUDA

#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/phi/kernels/cast_kernel.h"

#include "paddle/fluid/framework/data_device_transform.h"
#include "paddle/fluid/framework/executor.h"
Expand Down Expand Up @@ -596,7 +596,14 @@ class TensorRTEngineOp : public framework::OperatorBase {
if (type == framework::proto::VarType::FP32) {
buffers[bind_index] = static_cast<void *>(t.data<float>());
} else if (type == framework::proto::VarType::INT64) {
buffers[bind_index] = static_cast<void *>(t.data<int64_t>());
auto int32_tensor =
scope.FindVar(x + "_cast_to_INT32")->GetMutable<phi::DenseTensor>();
*int32_tensor = phi::Cast<int64_t>(
reinterpret_cast<const phi::GPUContext &>(dev_ctx),
t,
phi::DataType::INT32);
buffers[bind_index] =
static_cast<void *>(int32_tensor->data<int32_t>());
} else if (type == framework::proto::VarType::INT32) {
buffers[bind_index] = static_cast<void *>(t.data<int32_t>());
} else if (type == framework::proto::VarType::FP16) {
Expand All @@ -614,8 +621,8 @@ class TensorRTEngineOp : public framework::OperatorBase {

// Bind output tensor to TRT.
int output_index = 0;
std::vector<int> origin_output_dims =
Attr<std::vector<int>>("origin_output_dims");
std::vector<int> origin_output_rank =
Attr<std::vector<int>>("origin_output_rank");
VLOG(4) << "TensorRT Engine Op Outputs:";
for (const auto &y : Outputs("Ys")) {
const int bind_index =
Expand All @@ -636,7 +643,7 @@ class TensorRTEngineOp : public framework::OperatorBase {
for (; nb_dims > 0; nb_dims--) {
// some 'x 1' of shape is normal, no need to remove it
if (dims.d[nb_dims - 1] != 1 ||
nb_dims == origin_output_dims[output_index])
nb_dims == origin_output_rank[output_index])
break;
}
for (int i = 0; i < nb_dims; i++) ddim.push_back(dims.d[i]);
Expand Down Expand Up @@ -694,6 +701,28 @@ class TensorRTEngineOp : public framework::OperatorBase {
}
// Execute the engine.
engine->Execute(runtime_batch, &buffers, stream);

std::vector<int> origin_outputs_dtype =
Attr<std::vector<int>>("origin_outputs_dtype");
for (size_t i = 0; i < Outputs("Ys").size(); i++) {
auto type =
static_cast<framework::proto::VarType_Type>(origin_outputs_dtype[i]);

if (type == framework::proto::VarType::INT64) {
auto y = Outputs("Ys")[i];
auto *fluid_v = scope.FindVar(y);
auto *fluid_t = fluid_v->GetMutable<phi::DenseTensor>();
auto int32_tensor =
scope.FindVar(y + "_cast_to_INT64")->GetMutable<phi::DenseTensor>();
int32_tensor->Resize(fluid_t->dims());
dev_ctx.Alloc<int32_t>(int32_tensor);
framework::TensorCopy(*fluid_t, dev_place, dev_ctx, int32_tensor);
*fluid_t = phi::Cast<int32_t>(
reinterpret_cast<const phi::GPUContext &>(dev_ctx),
*int32_tensor,
phi::DataType::INT64);
}
}
}

TensorRTEngine *GetEngine(const framework::Scope &scope,
Expand Down
5 changes: 3 additions & 2 deletions paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -104,6 +104,7 @@ void DynamicShapeTest(bool allow_build_at_runtime) {
engine_op_desc.SetType("tensorrt_engine");
engine_op_desc.SetInput("Xs", std::vector<std::string>({"x"}));
engine_op_desc.SetOutput("Ys", std::vector<std::string>({"z0"}));
engine_op_desc.SetAttr("origin_outputs_dtype", std::vector<int>{5});

engine_op_desc.SetBlockAttr("sub_block", &block_desc);
engine_op_desc.SetAttr("max_batch_size", static_cast<int>(2));
Expand All @@ -119,7 +120,7 @@ void DynamicShapeTest(bool allow_build_at_runtime) {
engine_op_desc.SetAttr("use_calib_mode", static_cast<bool>(false));
engine_op_desc.SetAttr("output_name_mapping",
std::vector<std::string>({"z0"}));
engine_op_desc.SetAttr("origin_output_dims", std::vector<int>({2}));
engine_op_desc.SetAttr("origin_output_rank", std::vector<int>({2}));
engine_op_desc.SetAttr("subgraph", std::string(block_->SerializeAsString()));
engine_op_desc.SetAttr("engine_serialized_data", std::string(""));
int device_id = 0;
Expand Down Expand Up @@ -274,7 +275,7 @@ void Execute(int batch_size, int input_dim, int output_dim, int nlayers = 1) {
engine_op_desc.SetAttr("use_calib_mode", static_cast<bool>(false));
engine_op_desc.SetAttr("output_name_mapping",
std::vector<std::string>({"z3"}));
engine_op_desc.SetAttr("origin_output_dims", std::vector<int>({2}));
engine_op_desc.SetAttr("origin_output_rank", std::vector<int>({2}));
engine_op_desc.SetAttr("subgraph", std::string(block_->SerializeAsString()));
engine_op_desc.SetAttr("engine_serialized_data", std::string(""));
int device_id = 0;
Expand Down
Loading

0 comments on commit 5f3aacf

Please sign in to comment.