Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve ludwig feature dict #3904

Open
wants to merge 12 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 10 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/pytest.yml
Original file line number Diff line number Diff line change
Expand Up @@ -254,7 +254,7 @@ jobs:
# remove torch and ray from the dependencies so we can add them depending on the matrix args for the job.
cat requirements.txt | sed '/^torch[>=<\b]/d' | sed '/^torchtext/d' | sed '/^torchvision/d' | sed '/^torchaudio/d' > requirements-temp && mv requirements-temp requirements.txt
cat requirements_distributed.txt | sed '/^ray[\[]/d'
pip install torch==2.0.0 torchtext torchvision torchaudio
pip install torch==2.1.0 torchtext torchvision torchaudio
pip install ray==2.3.0
pip install '.[test]'
pip list
Expand Down
10 changes: 6 additions & 4 deletions ludwig/explain/captum.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,13 +216,13 @@ def explain(self) -> ExplanationsResult:
feat_to_token_attributions_global[feat_name] = token_attributions_global

self.global_explanation.add(
input_features.keys(), total_attribution_global, feat_to_token_attributions_global
list(input_features.keys()), total_attribution_global, feat_to_token_attributions_global
)

for i, (feature_attributions, explanation) in enumerate(zip(total_attribution, self.row_explanations)):
# Add the feature attributions to the explanation object for this row.
explanation.add(
input_features.keys(),
list(input_features.keys()),
feature_attributions,
{k: v[i] for k, v in feat_to_token_attributions.items()},
)
Expand All @@ -245,7 +245,7 @@ def explain(self) -> ExplanationsResult:
}
# Prepend the negative class to the list of label explanations.
self.global_explanation.add(
input_features.keys(), negated_attributions, negated_token_attributions, prepend=True
list(input_features.keys()), negated_attributions, negated_token_attributions, prepend=True
)

for explanation in self.row_explanations:
Expand All @@ -257,7 +257,9 @@ def explain(self) -> ExplanationsResult:
if fa.token_attributions is not None
}
# Prepend the negative class to the list of label explanations.
explanation.add(input_features.keys(), negated_attributions, negated_token_attributions, prepend=True)
explanation.add(
list(input_features.keys()), negated_attributions, negated_token_attributions, prepend=True
)

# TODO(travis): for force plots, need something similar to SHAP E[X]
expected_values.append(0.0)
Expand Down
10 changes: 6 additions & 4 deletions ludwig/explain/captum_ray.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,13 +115,13 @@ def explain(self) -> ExplanationsResult:
feat_to_token_attributions_global[feat_name] = token_attributions_global

self.global_explanation.add(
input_features.keys(), total_attribution_global, feat_to_token_attributions_global
list(input_features.keys()), total_attribution_global, feat_to_token_attributions_global
)

for i, (feature_attributions, explanation) in enumerate(zip(total_attribution, self.row_explanations)):
# Add the feature attributions to the explanation object for this row.
explanation.add(
input_features.keys(),
list(input_features.keys()),
feature_attributions,
{k: v[i] for k, v in feat_to_token_attributions.items()},
)
Expand All @@ -140,7 +140,7 @@ def explain(self) -> ExplanationsResult:
}
# Prepend the negative class to the list of label explanations.
self.global_explanation.add(
input_features.keys(), negated_attributions, negated_token_attributions, prepend=True
list(input_features.keys()), negated_attributions, negated_token_attributions, prepend=True
)

for explanation in self.row_explanations:
Expand All @@ -152,7 +152,9 @@ def explain(self) -> ExplanationsResult:
if fa.token_attributions is not None
}
# Prepend the negative class to the list of label explanations.
explanation.add(input_features.keys(), negated_attributions, negated_token_attributions, prepend=True)
explanation.add(
list(input_features.keys()), negated_attributions, negated_token_attributions, prepend=True
)

# TODO(travis): for force plots, need something similar to SHAP E[X]
expected_values.append(0.0)
Expand Down
4 changes: 2 additions & 2 deletions ludwig/explain/gbm.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,11 +55,11 @@ def explain(self) -> ExplanationsResult:

expected_values = []
for _ in range(self.vocab_size):
self.global_explanation.add(base_model.input_features.keys(), feat_imp)
self.global_explanation.add(list(base_model.input_features.keys()), feat_imp)

for explanation in self.row_explanations:
# Add the feature attributions to the explanation object for this row.
explanation.add(base_model.input_features.keys(), feat_imp)
explanation.add(list(base_model.input_features.keys()), feat_imp)

# TODO:
expected_values.append(0.0)
Expand Down
46 changes: 17 additions & 29 deletions ludwig/features/feature_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,8 @@
# limitations under the License.
# ==============================================================================
import re
from typing import Dict, List, Optional, Tuple, Union
from collections.abc import MutableMapping
from typing import Iterator, List, Optional, Union

import numpy as np
import torch
Expand Down Expand Up @@ -157,7 +158,7 @@ def get_name_from_module_dict_key(key: str, feature_name_suffix_length: int = FE
return name[:-feature_name_suffix_length]


class LudwigFeatureDict(torch.nn.Module):
class LudwigFeatureDict(torch.nn.Module, MutableMapping):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@dennisrall Thank you for incorporating my previous suggestion -- I think that part looks clean now. Thank you for the idea and the implementation!

For this one, I am not sure if the benefits due to adding the MutableMapping subclassing justify taking the risk brought about the multiple inheritance. Do the test cover all the eventualities that might happen with this change?

Thank you. /cc @justinxzhao @arnavgarg1 @Infernaught

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

No problem, I was just playing around a bit.

I can't think of any problems about the multiple inheritance, but you know the code better than me😉

It is also possible to remove the MutableMapping inheritance and implement the other methods by hand. But I think this way it is a bit cleaner, if it doesn't cause any problems...

"""Torch ModuleDict wrapper that permits keys with any name.

Torch's ModuleDict implementation doesn't allow certain keys to be used if they conflict with existing class
Expand All @@ -174,39 +175,26 @@ class LudwigFeatureDict(torch.nn.Module):
def __init__(self):
super().__init__()
self.module_dict = torch.nn.ModuleDict()
self.internal_key_to_original_name_map = {}

def get(self, key) -> torch.nn.Module:
def __getitem__(self, key: str) -> torch.nn.Module:
return self.module_dict[get_module_dict_key_from_name(key)]

def set(self, key: str, module: torch.nn.Module) -> None:
def __setitem__(self, key: str, value: torch.nn.Module) -> None:
module_dict_key_name = get_module_dict_key_from_name(key)
self.internal_key_to_original_name_map[module_dict_key_name] = key
self.module_dict[module_dict_key_name] = module
self.module_dict[module_dict_key_name] = value

def __len__(self) -> int:
return len(self.module_dict)

def __next__(self) -> None:
return next(iter(self))
def __delitem__(self, key: str) -> None:
del self.module_dict[get_module_dict_key_from_name(key)]

def __iter__(self) -> None:
return iter(self.keys())
def __iter__(self) -> Iterator[str]:
return (get_name_from_module_dict_key(key) for key in self.module_dict)

def keys(self) -> List[str]:
return [
get_name_from_module_dict_key(feature_name)
for feature_name in self.internal_key_to_original_name_map.keys()
]

def values(self) -> List[torch.nn.Module]:
return [module for _, module in self.module_dict.items()]
def __len__(self) -> int:
return len(self.module_dict)

def items(self) -> List[Tuple[str, torch.nn.Module]]:
return [
(get_name_from_module_dict_key(feature_name), module) for feature_name, module in self.module_dict.items()
]
def set(self, key: str, value: torch.nn.Module) -> None:
self[key] = value

def update(self, modules: Dict[str, torch.nn.Module]) -> None:
for feature_name, module in modules.items():
self.set(feature_name, module)
def __hash__(self) -> int:
"""Static hash value, because the object is mutable, but needs to be hashable for pytorch."""
return 1
2 changes: 1 addition & 1 deletion ludwig/models/ecd.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,7 @@ def forward(
else:
targets = None

assert list(inputs.keys()) == self.input_features.keys()
assert list(inputs.keys()) == list(self.input_features.keys())

encoder_outputs = self.encode(inputs)
combiner_outputs = self.combine(encoder_outputs)
Expand Down
4 changes: 2 additions & 2 deletions ludwig/models/gbm.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,14 +101,14 @@ def forward(
) -> Dict[str, torch.Tensor]:
# Invoke output features.
output_logits = {}
output_feature_name = self.output_features.keys()[0]
output_feature_name = next(iter(self.output_features.keys()))
output_feature = self.output_features.get(output_feature_name)

# If `inputs` is a tuple, it should contain `(inputs, targets)`.
if isinstance(inputs, tuple):
inputs, _ = inputs

assert list(inputs.keys()) == self.input_features.keys()
assert list(inputs.keys()) == list(self.input_features.keys())

# If the model has not been compiled, predict using the LightGBM sklearn iterface. Otherwise, use torch with
# the Hummingbird compiled model. Notably, when compiling the model to torchscript, compiling with Hummingbird
Expand Down
11 changes: 6 additions & 5 deletions ludwig/models/llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,13 +65,13 @@ def __iter__(self) -> None:
return iter(self.obj.keys())

def keys(self) -> List[str]:
return self.obj.keys()
return list(self.obj.keys())

def values(self) -> List[torch.nn.Module]:
return self.obj.values()
return list(self.obj.values())

def items(self) -> List[Tuple[str, torch.nn.Module]]:
return self.obj.items()
return list(self.obj.items())

def update(self, modules: Dict[str, torch.nn.Module]) -> None:
self.obj.update(modules)
Expand Down Expand Up @@ -148,7 +148,8 @@ def __init__(
)

# Extract the decoder object for the forward pass
self._output_feature_decoder = ModuleWrapper(self.output_features.items()[0][1])
decoder = next(iter(self.output_features.values()))
self._output_feature_decoder = ModuleWrapper(decoder)

self.attention_masks = None

Expand Down Expand Up @@ -401,7 +402,7 @@ def _unpack_inputs(
else:
targets = None

assert list(inputs.keys()) == self.input_features.keys()
assert list(inputs.keys()) == list(self.input_features.keys())

input_ids = self.get_input_ids(inputs)
target_ids = self.get_target_ids(targets) if targets else None
Expand Down
12 changes: 6 additions & 6 deletions ludwig/trainers/trainer_lightgbm.py
Original file line number Diff line number Diff line change
Expand Up @@ -831,8 +831,8 @@ def _construct_lgb_datasets(
validation_set: Optional["Dataset"] = None, # noqa: F821
test_set: Optional["Dataset"] = None, # noqa: F821
) -> Tuple[lgb.Dataset, List[lgb.Dataset], List[str]]:
X_train = training_set.to_scalar_df(self.model.input_features.values())
y_train = training_set.to_scalar_df(self.model.output_features.values())
X_train = training_set.to_scalar_df(list(self.model.input_features.values()))
y_train = training_set.to_scalar_df(list(self.model.output_features.values()))

# create dataset for lightgbm
# keep raw data for continued training https://github.com/microsoft/LightGBM/issues/4965#issuecomment-1019344293
Expand All @@ -850,8 +850,8 @@ def _construct_lgb_datasets(
eval_sets = [lgb_train]
eval_names = [LightGBMTrainer.TRAIN_KEY]
if validation_set is not None:
X_val = validation_set.to_scalar_df(self.model.input_features.values())
y_val = validation_set.to_scalar_df(self.model.output_features.values())
X_val = validation_set.to_scalar_df(list(self.model.input_features.values()))
y_val = validation_set.to_scalar_df(list(self.model.output_features.values()))
try:
lgb_val = lgb.Dataset(X_val, label=y_val, reference=lgb_train, free_raw_data=False).construct()
except lgb.basic.LightGBMError as e:
Expand All @@ -869,8 +869,8 @@ def _construct_lgb_datasets(
pass

if test_set is not None:
X_test = test_set.to_scalar_df(self.model.input_features.values())
y_test = test_set.to_scalar_df(self.model.output_features.values())
X_test = test_set.to_scalar_df(list(self.model.input_features.values()))
y_test = test_set.to_scalar_df(list(self.model.output_features.values()))
try:
lgb_test = lgb.Dataset(X_test, label=y_test, reference=lgb_train, free_raw_data=False).construct()
except lgb.basic.LightGBMError as e:
Expand Down
Loading
Loading