Skip to content

Commit

Permalink
Merge branch 'ludwig-ai:master' into improve-ludwig-feature-dict
Browse files Browse the repository at this point in the history
  • Loading branch information
dennisrall authored Feb 2, 2024
2 parents 23a2da7 + 0a24d0a commit acfa198
Show file tree
Hide file tree
Showing 29 changed files with 1,541 additions and 92 deletions.
57 changes: 57 additions & 0 deletions examples/semantic_segmentation/camseq.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
import logging
import os
import shutil

import pandas as pd
import torch
import yaml
from torchvision.utils import save_image

from ludwig.api import LudwigModel
from ludwig.datasets import camseq

# clean out prior results
shutil.rmtree("./results", ignore_errors=True)

# set up Python dictionary to hold model training parameters
with open("./config_camseq.yaml") as f:
config = yaml.safe_load(f.read())

# Define Ludwig model object that drive model training
model = LudwigModel(config, logging_level=logging.INFO)

# load Camseq dataset
df = camseq.load(split=False)

pred_set = df[0:1] # prediction hold-out 1 image
data_set = df[1:] # train,test,validate on remaining images

# initiate model training
(train_stats, _, output_directory) = model.train( # training statistics # location for training results saved to disk
dataset=data_set,
experiment_name="simple_image_experiment",
model_name="single_model",
skip_save_processed_input=True,
)

# print("{}".format(model.model))

# predict
pred_set.reset_index(inplace=True)
pred_out_df, results = model.predict(pred_set)

if not isinstance(pred_out_df, pd.DataFrame):
pred_out_df = pred_out_df.compute()
pred_out_df["image_path"] = pred_set["image_path"]
pred_out_df["mask_path"] = pred_set["mask_path"]

for index, row in pred_out_df.iterrows():
pred_mask = torch.from_numpy(row["mask_path_predictions"])
pred_mask_path = os.path.dirname(os.path.realpath(__file__)) + "/predicted_" + os.path.basename(row["mask_path"])
print(f"\nSaving predicted mask to {pred_mask_path}")
if torch.any(pred_mask.gt(1)):
pred_mask = pred_mask.float() / 255
save_image(pred_mask, pred_mask_path)
print("Input image_path: {}".format(row["image_path"]))
print("Label mask_path: {}".format(row["mask_path"]))
print(f"Predicted mask_path: {pred_mask_path}")
33 changes: 33 additions & 0 deletions examples/semantic_segmentation/config_camseq.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
input_features:
- name: image_path
type: image
preprocessing:
num_processes: 6
infer_image_max_height: 1024
infer_image_max_width: 1024
encoder: unet

output_features:
- name: mask_path
type: image
preprocessing:
num_processes: 6
infer_image_max_height: 1024
infer_image_max_width: 1024
infer_image_num_classes: true
num_classes: 32
decoder:
type: unet
num_fc_layers: 0
loss:
type: softmax_cross_entropy

combiner:
type: concat
num_fc_layers: 0

trainer:
epochs: 100
early_stop: -1
batch_size: 1
max_batch_size: 1
2 changes: 2 additions & 0 deletions ludwig/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,8 @@
INFER_IMAGE_MAX_HEIGHT = "infer_image_max_height"
INFER_IMAGE_MAX_WIDTH = "infer_image_max_width"
INFER_IMAGE_SAMPLE_SIZE = "infer_image_sample_size"
INFER_IMAGE_NUM_CLASSES = "infer_image_num_classes"
IMAGE_MAX_CLASSES = 128
NUM_CLASSES = "num_classes"
NUM_CHANNELS = "num_channels"
REQUIRES_EQUAL_DIMENSIONS = "requires_equal_dimensions"
Expand Down
21 changes: 21 additions & 0 deletions ludwig/datasets/configs/camseq.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
version: 1.0
name: camseq
kaggle_dataset_id: carlolepelaars/camseq-semantic-segmentation
archive_filenames: camseq-semantic-segmentation.zip
sha256:
camseq-semantic-segmentation.zip: ea3aeba2661d9b3e3ea406668e7d9240cb2ba0c7e374914bb6d866147faff502
loader: camseq.CamseqLoader
preserve_paths:
- images
- masks
description: |
CamSeq01 Cambridge Labeled Objects in Video
https://www.kaggle.com/datasets/carlolepelaars/camseq-semantic-segmentation
columns:
- name: image_path
type: image
- name: mask_path
type: image
output_features:
- name: mask_path
type: image
61 changes: 61 additions & 0 deletions ludwig/datasets/loaders/camseq.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
# Copyright (c) 2023 Aizen Corp.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
from typing import List

import pandas as pd

from ludwig.datasets.loaders.dataset_loader import DatasetLoader
from ludwig.utils.fs_utils import makedirs


class CamseqLoader(DatasetLoader):
def transform_files(self, file_paths: List[str]) -> List[str]:
if not os.path.exists(self.processed_dataset_dir):
os.makedirs(self.processed_dataset_dir)

# move images and masks into separate directories
source_dir = self.raw_dataset_dir
images_dir = os.path.join(source_dir, "images")
masks_dir = os.path.join(source_dir, "masks")
makedirs(images_dir, exist_ok=True)
makedirs(masks_dir, exist_ok=True)

data_files = []
for f in os.listdir(source_dir):
if f.endswith("_L.png"): # masks
dest_file = os.path.join(masks_dir, f)
elif f.endswith(".png"): # images
dest_file = os.path.join(images_dir, f)
else:
continue
source_file = os.path.join(source_dir, f)
os.replace(source_file, dest_file)
data_files.append(dest_file)

return super().transform_files(data_files)

def load_unprocessed_dataframe(self, file_paths: List[str]) -> pd.DataFrame:
"""Creates a dataframe of image paths and mask paths."""
images_dir = os.path.join(self.processed_dataset_dir, "images")
masks_dir = os.path.join(self.processed_dataset_dir, "masks")
images = []
masks = []
for f in os.listdir(images_dir):
images.append(os.path.join(images_dir, f))
mask_f = f[:-4] + "_L.png"
masks.append(os.path.join(masks_dir, mask_f))

return pd.DataFrame({"image_path": images, "mask_path": masks})
1 change: 1 addition & 0 deletions ludwig/decoders/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# register all decoders
import ludwig.decoders.generic_decoders # noqa
import ludwig.decoders.image_decoders # noqa
import ludwig.decoders.llm_decoders # noqa
import ludwig.decoders.sequence_decoders # noqa
import ludwig.decoders.sequence_tagger # noqa
91 changes: 91 additions & 0 deletions ludwig/decoders/image_decoders.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
#! /usr/bin/env python
# Copyright (c) 2023 Aizen Corp.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import logging
from typing import Dict, Optional, Type

import torch

from ludwig.api_annotations import DeveloperAPI
from ludwig.constants import ENCODER_OUTPUT_STATE, HIDDEN, IMAGE, LOGITS, PREDICTIONS
from ludwig.decoders.base import Decoder
from ludwig.decoders.registry import register_decoder
from ludwig.modules.convolutional_modules import UNetUpStack
from ludwig.schema.decoders.image_decoders import ImageDecoderConfig, UNetDecoderConfig

logger = logging.getLogger(__name__)


@DeveloperAPI
@register_decoder("unet", IMAGE)
class UNetDecoder(Decoder):
def __init__(
self,
input_size: int,
height: int,
width: int,
num_channels: int = 1,
num_classes: int = 2,
conv_norm: Optional[str] = None,
decoder_config=None,
**kwargs,
):
super().__init__()
self.config = decoder_config
self.num_classes = num_classes

logger.debug(f" {self.name}")
if num_classes < 2:
raise ValueError(f"Invalid `num_classes` {num_classes} for unet decoder")
if height % 16 or width % 16:
raise ValueError(f"Invalid `height` {height} or `width` {width} for unet decoder")

self.unet = UNetUpStack(
img_height=height,
img_width=width,
out_channels=num_classes,
norm=conv_norm,
)

self.input_reshape = list(self.unet.input_shape)
self.input_reshape.insert(0, -1)
self._output_shape = (height, width)

def forward(self, combiner_outputs: Dict[str, torch.Tensor], target: torch.Tensor):
hidden = combiner_outputs[HIDDEN]
skips = combiner_outputs[ENCODER_OUTPUT_STATE]

# unflatten combiner outputs
hidden = hidden.reshape(self.input_reshape)

logits = self.unet(hidden, skips)
predictions = logits.argmax(dim=1).squeeze(1).byte()

return {LOGITS: logits, PREDICTIONS: predictions}

def get_prediction_set(self):
return {LOGITS, PREDICTIONS}

@staticmethod
def get_schema_cls() -> Type[ImageDecoderConfig]:
return UNetDecoderConfig

@property
def output_shape(self) -> torch.Size:
return torch.Size(self._output_shape)

@property
def input_shape(self) -> torch.Size:
return self.unet.input_shape
48 changes: 46 additions & 2 deletions ludwig/encoders/image/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,18 +19,19 @@
import torch

from ludwig.api_annotations import DeveloperAPI
from ludwig.constants import ENCODER_OUTPUT, IMAGE
from ludwig.constants import ENCODER_OUTPUT, ENCODER_OUTPUT_STATE, IMAGE
from ludwig.encoders.base import Encoder
from ludwig.encoders.registry import register_encoder
from ludwig.encoders.types import EncoderOutputDict
from ludwig.modules.convolutional_modules import Conv2DStack, ResNet
from ludwig.modules.convolutional_modules import Conv2DStack, ResNet, UNetDownStack
from ludwig.modules.fully_connected_modules import FCStack
from ludwig.modules.mlp_mixer_modules import MLPMixer
from ludwig.schema.encoders.image.base import (
ImageEncoderConfig,
MLPMixerConfig,
ResNetConfig,
Stacked2DCNNConfig,
UNetEncoderConfig,
ViTConfig,
)
from ludwig.utils.torch_utils import FreezeModule
Expand Down Expand Up @@ -424,3 +425,46 @@ def input_shape(self) -> torch.Size:
@property
def output_shape(self) -> torch.Size:
return torch.Size(self._output_shape)


@DeveloperAPI
@register_encoder("unet", IMAGE)
class UNetEncoder(ImageEncoder):
def __init__(
self,
height: int,
width: int,
num_channels: int = 3,
conv_norm: Optional[str] = None,
encoder_config=None,
**kwargs,
):
super().__init__()
self.config = encoder_config

logger.debug(f" {self.name}")
if height % 16 or width % 16:
raise ValueError(f"Invalid `height` {height} or `width` {width} for unet encoder")

self.unet = UNetDownStack(
img_height=height,
img_width=width,
in_channels=num_channels,
norm=conv_norm,
)

def forward(self, inputs: torch.Tensor) -> EncoderOutputDict:
hidden, skips = self.unet(inputs)
return {ENCODER_OUTPUT: hidden, ENCODER_OUTPUT_STATE: skips}

@staticmethod
def get_schema_cls() -> Type[ImageEncoderConfig]:
return UNetEncoderConfig

@property
def output_shape(self) -> torch.Size:
return self.unet.output_shape

@property
def input_shape(self) -> torch.Size:
return self.unet.input_shape
3 changes: 2 additions & 1 deletion ludwig/features/feature_registries.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@
)
from ludwig.features.date_feature import DateFeatureMixin, DateInputFeature
from ludwig.features.h3_feature import H3FeatureMixin, H3InputFeature
from ludwig.features.image_feature import ImageFeatureMixin, ImageInputFeature
from ludwig.features.image_feature import ImageFeatureMixin, ImageInputFeature, ImageOutputFeature
from ludwig.features.number_feature import NumberFeatureMixin, NumberInputFeature, NumberOutputFeature
from ludwig.features.sequence_feature import SequenceFeatureMixin, SequenceInputFeature, SequenceOutputFeature
from ludwig.features.set_feature import SetFeatureMixin, SetInputFeature, SetOutputFeature
Expand Down Expand Up @@ -108,6 +108,7 @@ def get_output_type_registry() -> Dict:
TIMESERIES: TimeseriesOutputFeature,
VECTOR: VectorOutputFeature,
CATEGORY_DISTRIBUTION: CategoryDistributionOutputFeature,
IMAGE: ImageOutputFeature,
}


Expand Down
Loading

0 comments on commit acfa198

Please sign in to comment.