A sophisticated cryptocurrency trading system combining advanced volatility modeling, regime detection, and smart order execution. Built for 24/7 markets with specific adaptations for cryptocurrency dynamics.
graph TD
A[Market Data] --> B[Data Pipeline]
B --> C[Feature Engineering]
C --> D[Risk Engine]
D --> E[Portfolio Optimizer]
E --> F[Signal Generator]
F --> G[Execution Engine]
H[GARCH Analysis] --> D
I[Regime Detection] --> D
J[Whale Activity] --> B
K[Market Sentiment] --> B
L[Order Flow] --> B
M[Risk Analytics] --> N[Performance Dashboard]
G --> M
Advanced data processing pipeline for crypto markets:
from datetime import datetime, timedelta
import yfinance as yf
import pandas as pd
from typing import Dict, Optional
class CryptoDataPipeline:
def __init__(self, config: Optional[PipelineConfig] = None):
self.config = config or PipelineConfig()
self.processor = DataProcessor(self.config.processor_config)
self.data: Dict[str, pd.DataFrame] = {}
Crypto-adapted GARCH modeling with regime awareness:
@dataclass
class CryptoGARCHConfig:
p: int = 1
q: int = 1
dist: str = 'skewt'
vol_targeting: bool = True
target_vol: float = 0.50
mean_model: str = 'Zero'
vol_model: str = 'EGARCH'
power: float = 2.0
Advanced risk controls with multi-factor analysis:
class RiskManager:
def check_trade(self, symbol: str, size: float, price: float,
market_data: pd.DataFrame) -> Tuple[bool, Dict]:
checks = {
'size_check': self._check_position_size(size),
'var_check': self._check_portfolio_var(symbol, size, market_data),
'liquidity_check': self._check_liquidity(symbol, size, market_data),
'concentration_check': self._check_concentration(symbol, size),
'drawdown_check': self._check_drawdown()
}
return all(checks.values()), checks
# Trading pairs configuration
symbols:
- BTC-USD
- ETH-USD
# Timeframe settings
timeframes:
- 1h
- 4h
# Risk management parameters
max_position_size: 0.02
max_drawdown: 0.15
stop_loss: 0.02
# Exchange settings
primary_exchange: binance
# Clone repository
git clone <repository-url>
cd trading-bot
# Set up virtual environment
python3.12 -m venv venv # Python 3.12 specificly otherwise issues with dependencies
source venv/bin/activate # Unix
.\venv\Scripts\activate # Windows
# Install dependencies
pip install -r requirements.txt
# Set up environment variables
cp .env.example .env
# Edit .env with your configuration
# Create virtual environment
python -m venv venv
source venv/bin/activate # Unix/macOS
.\venv\Scripts\activate # Windows
# Install dependencies
pip install -r requirements.txt
pip install -e ".[dev]"
Core Dependencies:
- numpy>=1.20.0
- pandas>=1.3.0
- scipy>=1.7.0
- scikit-learn>=1.0.0
- matplotlib>=3.4.0
- seaborn>=0.11.0
- python-binance>=1.0.0
- arch>=4.19.0
- statsmodels>=0.13.0
- plotly>=5.0.0
- dash>=2.0.0
Development Tools:
- pytest>=7.0.0
- pytest-asyncio>=0.18.0
- pytest-mock>=3.7.0
- black>=22.0.0
- flake8>=4.0.0
- mypy>=0.800
def test_garch_performance(test_data):
config = CryptoGARCHConfig(
rescale=True,
scale_factor=100.0,
forecast_horizon=1,
simulation_draws=1000
)
model = CryptoGARCHModel(config)
results = run_performance_test(run_garch, test_data)
assert results['execution_time'] < 5.0
assert results['memory_used'] < 1024 * 1024 * 100
@pytest.fixture(scope="session")
def real_crypto_data():
pairs = ['BTC-USD', 'ETH-USD', 'SOL-USD', 'DOGE-USD']
end_date = datetime.now()
start_date = end_date - timedelta(days=30)
# Implementation details in tests/test_real_data.py
Real-time system monitoring with Dash:
class TradingDashboard:
def __init__(self, portfolio_manager, risk_manager, execution_router):
self.app = dash.Dash(__name__)
self.portfolio = portfolio_manager
self.risk = risk_manager
self.execution = execution_router
src/
βββ analysis/
β βββ garch.py # GARCH modeling
β βββ regime.py # Market regime detection
βββ data/
β βββ pipeline.py # Data processing pipeline
βββ risk/
β βββ manager.py # Risk management system
βββ monitoring/
β βββ dashboard.py # Real-time monitoring
βββ utils/
βββ benchmark_utils.py # Performance testing
Commercial Software License Copyright Β© 2024 Lucas Kemper All Rights Reserved
For licensing inquiries:
- Email: [email protected]
Note: This system is under active development. Features and documentation are updated frequently.