Skip to content

Commit

Permalink
Revert "Generic linalg::map (rapidsai#1329)" (rapidsai#1336)
Browse files Browse the repository at this point in the history
The change to the public API was siginficant enough here that it's going to require updates on the cuml side which invoke `map_k` with very different arguments (e.g. mdspan, different order). For now, it's best we revert this commmit to unblock cuml and then we can proceed by keeping the old APIs and deprecating them until we change cuml.

Authors:
  - Corey J. Nolet (https://github.com/cjnolet)

Approvers:
  - Ben Frederickson (https://github.com/benfred)

URL: rapidsai#1336
  • Loading branch information
cjnolet authored and lowener committed Mar 15, 2023
1 parent e030e87 commit 3cbb093
Show file tree
Hide file tree
Showing 14 changed files with 580 additions and 470 deletions.
26 changes: 22 additions & 4 deletions cpp/include/raft/linalg/binary_op.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,12 @@

#pragma once

#include "detail/binary_op.cuh"

#include <raft/core/device_mdspan.hpp>
#include <raft/core/device_resources.hpp>
#include <raft/linalg/map.cuh>
#include <raft/util/cuda_utils.cuh>
#include <raft/util/input_validation.hpp>

namespace raft {
namespace linalg {
Expand Down Expand Up @@ -49,7 +52,7 @@ template <typename InType,
void binaryOp(
OutType* out, const InType* in1, const InType* in2, IdxType len, Lambda op, cudaStream_t stream)
{
return detail::map<false>(stream, out, len, op, in1, in2);
detail::binaryOp(out, in1, in2, len, op, stream);
}

/**
Expand Down Expand Up @@ -77,12 +80,27 @@ template <typename InType,
typename = raft::enable_if_output_device_mdspan<OutType>>
void binary_op(raft::device_resources const& handle, InType in1, InType in2, OutType out, Lambda op)
{
return map(handle, in1, in2, out, op);
RAFT_EXPECTS(raft::is_row_or_column_major(out), "Output must be contiguous");
RAFT_EXPECTS(raft::is_row_or_column_major(in1), "Input 1 must be contiguous");
RAFT_EXPECTS(raft::is_row_or_column_major(in2), "Input 2 must be contiguous");
RAFT_EXPECTS(out.size() == in1.size() && in1.size() == in2.size(),
"Size mismatch between Output and Inputs");

using in_value_t = typename InType::value_type;
using out_value_t = typename OutType::value_type;

if (out.size() <= std::numeric_limits<std::uint32_t>::max()) {
binaryOp<in_value_t, Lambda, out_value_t, std::uint32_t>(
out.data_handle(), in1.data_handle(), in2.data_handle(), out.size(), op, handle.get_stream());
} else {
binaryOp<in_value_t, Lambda, out_value_t, std::uint64_t>(
out.data_handle(), in1.data_handle(), in2.data_handle(), out.size(), op, handle.get_stream());
}
}

/** @} */ // end of group binary_op

}; // end namespace linalg
}; // end namespace raft

#endif
#endif
98 changes: 98 additions & 0 deletions cpp/include/raft/linalg/detail/binary_op.cuh
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
/*
* Copyright (c) 2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#pragma once

#include <raft/util/vectorized.cuh>

namespace raft {
namespace linalg {
namespace detail {

template <typename InType, int VecLen, typename Lambda, typename IdxType, typename OutType>
__global__ void binaryOpKernel(
OutType* out, const InType* in1, const InType* in2, IdxType len, Lambda op)
{
typedef TxN_t<InType, VecLen> InVecType;
typedef TxN_t<OutType, VecLen> OutVecType;
InVecType a, b;
OutVecType c;
IdxType idx = threadIdx.x + ((IdxType)blockIdx.x * blockDim.x);
idx *= InVecType::Ratio;
if (idx >= len) return;
a.load(in1, idx);
b.load(in2, idx);
#pragma unroll
for (int i = 0; i < InVecType::Ratio; ++i) {
c.val.data[i] = op(a.val.data[i], b.val.data[i]);
}
c.store(out, idx);
}

template <typename InType, int VecLen, typename Lambda, typename IdxType, typename OutType, int TPB>
void binaryOpImpl(
OutType* out, const InType* in1, const InType* in2, IdxType len, Lambda op, cudaStream_t stream)
{
const IdxType nblks = raft::ceildiv(VecLen ? len / VecLen : len, (IdxType)TPB);
binaryOpKernel<InType, VecLen, Lambda, IdxType, OutType>
<<<nblks, TPB, 0, stream>>>(out, in1, in2, len, op);
RAFT_CUDA_TRY(cudaPeekAtLastError());
}

/**
* @brief Checks if addresses are aligned on N bytes
*/
inline bool addressAligned(uint64_t addr1, uint64_t addr2, uint64_t addr3, uint64_t N)
{
return addr1 % N == 0 && addr2 % N == 0 && addr3 % N == 0;
}

template <typename InType,
typename Lambda,
typename OutType = InType,
typename IdxType = int,
int TPB = 256>
void binaryOp(
OutType* out, const InType* in1, const InType* in2, IdxType len, Lambda op, cudaStream_t stream)
{
constexpr auto maxSize = sizeof(InType) > sizeof(OutType) ? sizeof(InType) : sizeof(OutType);
size_t bytes = len * maxSize;
uint64_t in1Addr = uint64_t(in1);
uint64_t in2Addr = uint64_t(in2);
uint64_t outAddr = uint64_t(out);
if (16 / maxSize && bytes % 16 == 0 && addressAligned(in1Addr, in2Addr, outAddr, 16)) {
binaryOpImpl<InType, 16 / maxSize, Lambda, IdxType, OutType, TPB>(
out, in1, in2, len, op, stream);
} else if (8 / maxSize && bytes % 8 == 0 && addressAligned(in1Addr, in2Addr, outAddr, 8)) {
binaryOpImpl<InType, 8 / maxSize, Lambda, IdxType, OutType, TPB>(
out, in1, in2, len, op, stream);
} else if (4 / maxSize && bytes % 4 == 0 && addressAligned(in1Addr, in2Addr, outAddr, 4)) {
binaryOpImpl<InType, 4 / maxSize, Lambda, IdxType, OutType, TPB>(
out, in1, in2, len, op, stream);
} else if (2 / maxSize && bytes % 2 == 0 && addressAligned(in1Addr, in2Addr, outAddr, 2)) {
binaryOpImpl<InType, 2 / maxSize, Lambda, IdxType, OutType, TPB>(
out, in1, in2, len, op, stream);
} else if (1 / maxSize) {
binaryOpImpl<InType, 1 / maxSize, Lambda, IdxType, OutType, TPB>(
out, in1, in2, len, op, stream);
} else {
binaryOpImpl<InType, 1, Lambda, IdxType, OutType, TPB>(out, in1, in2, len, op, stream);
}
}

} // namespace detail
} // namespace linalg
} // namespace raft
54 changes: 54 additions & 0 deletions cpp/include/raft/linalg/detail/init.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
/*
* Copyright (c) 2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#pragma once

#include <rmm/exec_policy.hpp>
#include <thrust/copy.h>
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>

namespace raft {
namespace linalg {
namespace detail {

template <typename T>
void range(T* out, int start, int end, cudaStream_t stream)
{
thrust::counting_iterator<int> first(start);
thrust::counting_iterator<int> last = first + (end - start);
thrust::device_ptr<T> ptr(out);
thrust::copy(rmm::exec_policy(stream), first, last, ptr);
}

/**
* @brief Like Python range.
*
* Fills the output as out[i] = i.
*
* \param [out] out device array, size [n]
* \param [in] n length of the array
* \param [in] stream cuda stream
*/
template <typename T, int TPB = 256>
void range(T* out, int n, cudaStream_t stream)
{
range(out, 0, n, stream);
}

} // namespace detail
} // namespace linalg
} // namespace raft
Loading

0 comments on commit 3cbb093

Please sign in to comment.