Skip to content

Latest commit

 

History

History
324 lines (225 loc) · 13.2 KB

README_doc.md

File metadata and controls

324 lines (225 loc) · 13.2 KB

200_200

licenseRelease VersionPRs Welcome

QSQL is a SQL query product which can be used for specific datastore queries or multiple datastores correlated queries. It supports relational databases, non-relational databases and even datastore which does not support SQL (such as Elasticsearch, Druid) . In addition, a SQL query can join or union data from multiple datastores in QSQL. For example, you can perform unified SQL query on one situation that a part of data stored on Elasticsearch, but the other part of data stored on Hive. The most important is that QSQL is not dependent on any intermediate compute engine, users only need to focus on data and unified SQL grammar to finished statistics and analysis.

English|中文

1540973404791

QSQL architecture consists of three layers:

  • Parsing Layer: Used for parsing, validation, optimization of SQL statements, splitting of mixed SQL and finally generating Query Plan;

  • Computing Layer: For routing query plan to a specific execution plan, then interpreted to executable code for given storage or engine(such as Elasticsearch JSON query or Hive HQL);

  • Storage layer: For data prepared extraction and storage;

Build

Requirements

  • CentOS 6.2
  • java >= 1.8
  • scala >= 2.11
  • spark >= 2.2
  • [Options] MySQL, Elasticsearch, Hive, Druid

Deployment

Uncompress the package qsql-0.5.tar.gz

tar -zxvf ./qsql-0.5.tar.gz

Create a soft link

ln -s qsql-0.5/ qsql

The main directory structure after decompression of the release package is:

  • bin: included all of scripts for building environment and running sql.
  • conf: included all of configures in runtime.
  • data: stored data for testing.
  • metastore: included a embedded database and create table statements scripts for managing metadata.

In directory $QSQL_HOME/conf, configure the following files:

  • base-env.sh:Included correlated environment variables:
    • JAVA_HOME
    • SPARK_HOME
    • QSQL_CLUSTER_URL
    • QSQL_HDFS_TMP
  • qsql-runner.properties:Included serveral runtime properties
  • log4j.properties:Included logger level

Examples

QSQL Shell

./bin/qsql -e "select 1"

Detailed:English|中文

Query Example

Several sample queries are included with QSQL. To run one of them, use ./run-example <class> [params]

Example 1: Memory Table Query

./bin/run-example com.qihoo.qsql.CsvScanExample

Example 2: Hive Join MySQL

./bin/run-example com.qihoo.qsql.CsvJoinWithEsExample

Note:

If you are running a hybrid query, make sure the current machine has deployed Spark, Hive and MySQL environment and inserted the correct connection information of Hive and MySQL into the metastore.

Detailed:English|中文

Properties Configure

Environment Variables

Property Name Meaning
JAVA_HOME Java installation path
SPARK_HOME Spark installation path
QSQL_CLUSTER_URL Hadoop cluster url
QSQL_HDFS_TMP (Option) Hadoop tmp path
QSQL_DEFAULT_WORKER_NUM (Option) Worker number
QSQL_DEFAULT_WORKER_MEMORY (Option) Worker memory size
QSQL_DEFAULT_DRIVER_MEMORY (Option) Driver memory size
QSQL_DEFAULT_MASTER (Option) Cluster mode in Spark
QSQL_DEFAULT_RUNNER (Option) Execution mode

Runtime Variables

Application Properties

Property Name Default Meaning
spark.sql.hive.metastore.jars builtin Hive Jars
spark.sql.hive.metastore.version 1.2.1 Hive version
spark.local.dir /tmp Temporary file path used by Spark
spark.driver.userClassPathFirst true User jars are loaded first during Spark execution
spark.sql.broadcastTimeout 300 Max broadcast waited Time
spark.sql.crossJoin.enabled true Allow Spark SQL execute cross join
spark.speculation true Spark will start task speculation execution
spark.sql.files.maxPartitionBytes 134217728(128MB) The maximum number of bytes of a single partition when Spark reads a file

Metadata Properties

Property Name Default Meaning
meta.storage.mode intern Metadata storage mode. intern: read the metadata stored in the embeded sqlite database. extern: read the metadata stored in the external database
meta.intern.schema.dir ../metastore/schema.db The path of embeded database file
meta.extern.schema.driver (none) The driver of external database
meta.extern.schema.url (none) The connection url of external database
meta.extern.schema.user (none) The user name of external database
meta.extern.schema.password (none) The password of external database

Metadata Management

Tables

DBS

Fields Note Sample
DB_ID Database ID 1
DESC Database Description es index
NAME Database Name es_profile_index
DB_TYPE Database Type es, Hive, MySQL

DATABASE_PARAMS

Fields Note Sample
DB_ID Database ID 1
PARAM_KEY Param Key UserName
PARAM_VALUE Param Value root

TBLS

Fields Note Sample
TBL_ID Table ID 101
CREATED_TIME Creation Time 2018-10-22 14:36:10
DB_ID Database ID 1
TBL_NAME Table Name student

COLUMNS

Fields Note Sample
CD_ID Column ID 10101
COMMENT Field Comment Student Name
COLUMN_NAME Field Name name
TYPE_NAME Field Type varchar
INTEGER_IDX Field Index 1

Embedded SQLite Database

In the directory $QSQL_HOME/metastore, included following files:

  • sqlite3:SQLite command line tool
  • schema.db:SQLite embedded database
  • ./linux-x86/sqldiff:A tool that displays the differences between SQLite databases.
  • ./linux-x86/sqlite3_analyzer:A command-line utility program that measures and displays how much and how efficiently space is used by individual tables and indexes with an SQLite database file

Connect to the schema.db database via sqlite3 and manipulate the metadata table

sqlite3 ../schema.db

External MySQL Database

Change the embedded SQLite data to a MySQL database

vim metadata.properties

meta.storage.mode=extern meta.extern.schema.driver = com.mysql.jdbc.Driver meta.extern.schema.url = jdbc:mysql://ip:port/db?useUnicode=true meta.extern.schema.user = YourName meta.extern.schema.password = YourPassword

Initialize the sample data to the MySQL database

cd $QSQL_HOME/bin/
./metadata --dbType mysql --action init

Configure Metadata

Hive

Sample Configuration:

DB_ID DESC NAME DB_TYPE
26 hive message hive_database hive
DB_ID PARAM_KEY PARAM_VALUE
26 cluster cluster_name
TBL_ID CREATE_TIME DB_ID TBL_NAME
60 2018-11-06 10:44:51 26 hive_mobile
CD_ID COMMENT COLUMN_NAME TYPE_NAME INTEGER_IDX
60 retsize string 1
60 im string 2
60 wto string 3
60 pro int 4
60 pday string 5

Elasticsearch

Sample Configuration:

DB_ID DESC NAME DB_TYPE
24 es message es_index es
DB_ID PARAM_KEY PARAM_VALUE
24 esNodes localhost
24 esPort 9025
24 esUser es_user
24 esPass es_password
24 esIndex es_index/es_type
24 esScrollNum 156
TBL_ID CREATE_TIME DB_ID TBL_NAME
57 2018-11-06 10:44:51 24 profile
CD_ID COMMENT COLUMN_NAME TYPE_NAME INTEGER_IDX
57 comment id int 1
57 comment name string 2
57 comment country string 3
57 comment gender string 4
57 comment operator string 5

MySQL

Sample Configuration:

DB_ID DESC NAME DB_TYPE
25 mysql db message mysql_database mysql
DB_ID PARAM_KEY PARAM_VALUE
25 jdbcDriver com.mysql.jdbc.Driver
25 jdbcUrl jdbc:mysql://localhost:3006/mysql_database
25 jdbcUser root
25 jdbcPassword root
TBL_ID CREATE_TIME DB_ID TBL_NAME
58 2018-11-06 10:44:51 25 test_date
CD_ID COMMENT COLUMN_NAME TYPE_NAME INTEGER_IDX
58 comment id int 1
58 comment name string 2

Contributing

We welcome contributions.

If you are intered in QSQL, you can download the source code from GitHub and execute the following maven comman at the project root directory:

mvn -DskipTests clean package

If you are planning to make a large contribution, talk to us first! It helps to agree on the general approach. Log a Issures on GitHub for your proposed feature.

Fork the GitHub repository, and create a branch for your feature.

Develop your feature and test cases, and make sure that mvn install succeeds. (Run extra tests if your change warrants it.)

Commit your change to your branch.

If your change had multiple commits, use git rebase -i master to squash them into a single commit, and to bring your code up to date with the latest on the main line.

Then push your commit(s) to GitHub, and create a pull request from your branch to the QSQL master branch. Update the JIRA case to reference your pull request, and a committer will review your changes.

The pull request may need to be updated (after its submission) for two main reasons:

  1. you identified a problem after the submission of the pull request;
  2. the reviewer requested further changes;

In order to update the pull request, you need to commit the changes in your branch and then push the commit(s) to GitHub. You are encouraged to use regular (non-rebased) commits on top of previously existing ones.

Talks

QQ Group: 932439028

WeChat Group: Posted in the QQ Group [ P.S. Incorrect QQ Group number will raise a NPE :) ]