libheif is an ISO/IEC 23008-12:2017 HEIF and AVIF (AV1 Image File Format) file format decoder and encoder.
HEIF and AVIF are new image file formats employing HEVC (h.265) or AV1 image coding, respectively, for the best compression ratios currently possible.
libheif makes use of libde265 for HEIF image decoding and x265 for encoding. For AVIF, libaom, dav1d, svt-av1, or rav1e are used as codecs.
libheif has support for decoding
- tiled images
- alpha channels
- thumbnails
- reading EXIF and XMP metadata
- reading the depth channel
- multiple images in a file
- image transformations (crop, mirror, rotate)
- overlay images
- plugin interface to add alternative codecs for additional formats (AVC, JPEG)
- decoding of files while downloading (e.g. extract image size before file has been completely downloaded)
- reading color profiles
- heix images (10 and 12 bit, chroma 4:2:2)
The encoder supports:
- lossy compression with adjustable quality
- lossless compression
- alpha channels
- thumbnails
- save multiple images to a file
- save EXIF and XMP metadata
- writing color profiles
- 10 and 12 bit images
- monochrome images
The library has a C API for easy integration and wide language support. Note that the API is still work in progress and may still change.
The decoder automatically supports both HEIF and AVIF through the same API. No changes are required to existing code to support AVIF.
The encoder can be switched between HEIF and AVIF simply by setting heif_compression_HEVC
or heif_compression_AV1
to heif_context_get_encoder_for_format()
.
Loading the primary image in an HEIF file is as easy as this:
heif_context* ctx = heif_context_alloc();
heif_context_read_from_file(ctx, input_filename, nullptr);
// get a handle to the primary image
heif_image_handle* handle;
heif_context_get_primary_image_handle(ctx, &handle);
// decode the image and convert colorspace to RGB, saved as 24bit interleaved
heif_image* img;
heif_decode_image(handle, &img, heif_colorspace_RGB, heif_chroma_interleaved_RGB, nullptr);
int stride;
const uint8_t* data = heif_image_get_plane_readonly(img, heif_channel_interleaved, &stride);
Writing an HEIF file can be done like this:
heif_context* ctx = heif_context_alloc();
// get the default encoder
heif_encoder* encoder;
heif_context_get_encoder_for_format(ctx, heif_compression_HEVC, &encoder);
// set the encoder parameters
heif_encoder_set_lossy_quality(encoder, 50);
// encode the image
heif_image* image; // code to fill in the image omitted in this example
heif_context_encode_image(ctx, image, encoder, nullptr, nullptr);
heif_encoder_release(encoder);
heif_context_write_to_file(context, "output.heic");
Get the EXIF data from an HEIF file:
heif_item_id exif_id;
int n = heif_image_handle_get_list_of_metadata_block_IDs(image_handle, "Exif", &exif_id, 1);
if (n==1) {
size_t exifSize = heif_image_handle_get_metadata_size(image_handle, exif_id);
uint8_t* exifData = malloc(exifSize);
struct heif_error error = heif_image_handle_get_metadata(image_handle, exif_id, exifData);
}
See the header file heif.h
for the complete C API.
There is also a C++ API which is a header-only wrapper to the C API. Hence, you can use the C++ API and still be binary compatible. Code using the C++ API is much less verbose than using the C API directly.
There is also an experimental Go API, but this is not stable yet.
This library uses either a standard autoconf/automake build system or CMake.
Using autoconf/automake for compilation is deprectated. Starting with v1.14.0, CMake is the preferred build tool. While autoconf/automake might still work for some time to come, not all options are available for it.
When using autoconf, run ./autogen.sh
to build the configuration scripts,
then call ./configure
and make
.
Note: compiling with autotools is now deprecated. Please use cmake instead. This section has to be updated...
Make sure that you compile and install libde265
first, so that the configuration script will find this.
Preferably, download the frame-parallel
branch of libde265, as this uses a
more recent API than the version in the master
branch.
Also install x265 and its development files if you want to use HEIF encoding.
-
Install dependencies with Homebrew
brew install automake make pkg-config x265 libde265 libjpeg libtool
-
Configure and build project
./autogen.sh ./configure make
You can build and install libheif using the vcpkg dependency manager:
git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.sh
./vcpkg integrate install
./vcpkg install libheif
The libheif port in vcpkg is kept up to date by Microsoft team members and community contributors. If the version is out of date, please create an issue or pull request on the vcpkg repository.
- Run the
aom.cmd
script in thethird-party
directory to download libaom and compile it.
When running cmake
or configure
, make sure that the environment variable
PKG_CONFIG_PATH
includes the absolute path to third-party/aom/dist/lib/pkgconfig
.
- Install
cargo
. - Install
cargo-c
by executing
cargo install --force cargo-c
- Run the
rav1e.cmd
script in thethird-party
directory to download rav1e and compile it.
When running cmake
or configure
, make sure that the environment variable
PKG_CONFIG_PATH
includes the absolute path to third-party/rav1e/dist/lib/pkgconfig
.
- Install
meson
. - Run the
dav1d.cmd
script in thethird-party
directory to download dav1d and compile it.
When running cmake
or configure
, make sure that the environment variable
PKG_CONFIG_PATH
includes the absolute path to third-party/dav1d/dist/lib/x86_64-linux-gnu/pkgconfig
.
You can either use the SVT-AV1 encoder libraries installed in the system or use a self-compiled current version. If you want to compile SVT-AV1 yourself,
- Run the
svt.cmd
script in thethird-party
directory to download SVT-AV1 and compile it.
When running cmake
or configure
, make sure that the environment variable
PKG_CONFIG_PATH
includes the absolute path to third-party/SVT-AV1/Build/linux/Release
.
You may have to replace linux
in this path with your system's identifier.
You have to enable SVT-AV1 with CMake. It is not built with autotools.
Starting with v1.14.0, each codec backend can be compiled statically into libheif or as a dynamically loaded plugin (currently Linux only). You can choose this individually for each codec backend in the CMake settings. Compiling a codec backend as dynamic plugin will generate a shared library that is installed in the system together with libheif. The advantage is that only the required plugins have to be installed and libheif has fewer dependencies.
The plugins are loaded from the colon-separated list of directories stored in the environment variable LIBHEIF_PLUGIN_PATH
.
If this variable is empty, they are loaded from a directory specified in the CMake configuration.
You can also add plugin directories programmatically.
A current benchmark of the AVIF encoders (as of 14 Oct 2022) can be found in the Wiki page AVIF encoding benchmark.
- .NET Platform (C#, F#, and other languages): libheif-sharp
- C++: part of libheif
- Go: part of libheif
- JavaScript: by compilation with emscripten (see below)
- NodeJS module: libheif-js
- Python: pyheif, pillow_heif
- Rust: libheif-sys
- Swift: libheif-Xcode
Languages that can directly interface with C libraries (e.g., Swift, C#) should work out of the box.
libheif can also be compiled to JavaScript using
emscripten.
See the build-emscripten.sh
for further information.
Check out this online demo.
This is libheif
running in JavaScript in your browser.
Some example programs are provided in the examples
directory.
The program heif-convert
converts all images stored in an HEIF/AVIF file to JPEG or PNG.
heif-enc
lets you convert JPEG files to HEIF/AVIF.
The program heif-info
is a simple, minimal decoder that dumps the file structure to the console.
For example convert example.heic
to JPEGs and one of the JPEGs back to HEIF:
cd examples/
./heif-convert example.heic example.jpeg
./heif-enc example-1.jpeg -o example.heif
In order to convert example-1.jpeg
to AVIF use:
./heif-enc example-1.jpeg -A -o example.avif
There is also a GIMP plugin using libheif here.
The program heif-thumbnailer
can be used as an HEIF/AVIF thumbnailer for the Gnome desktop.
The matching Gnome configuration files are in the gnome
directory.
Place the files heif.xml
and avif.xml
into /usr/share/mime/packages
and heif.thumbnailer
into /usr/share/thumbnailers
.
You may have to run update-mime-database /usr/share/mime
to update the list of known MIME types.
libheif also includes a gdk-pixbuf loader for HEIF/AVIF images. 'make install' will copy the plugin
into the system directories. However, you will still have to run gdk-pixbuf-query-loaders --update-cache
to update the gdk-pixbuf loader database.
- GIMP
- Krita
- ImageMagick
- darktable
- digiKam 7.0.0
- libvips
- Kodi HEIF image decoder plugin
- bimg
- GDAL
- OpenImageIO
Since I work as an independent developer, I need your support to be able to allocate time for libheif. You can sponsor the development using the link in the right hand column.
A big thank you goes to these major sponsors for supporting the development of libheif:
The libheif is distributed under the terms of the GNU Lesser General Public License. The sample applications are distributed under the terms of the MIT License.
See COPYING for more details.
Copyright (c) 2017-2020 Struktur AG
Copyright (c) 2017-2022 Dirk Farin
Contact: Dirk Farin [email protected]