Skip to content

Commit

Permalink
Tune Search Parameters
Browse files Browse the repository at this point in the history
Parameters Tune, adding also another tunable parameter (npmDiv) to be
variable for different nets (bignet, smallnet, psqtOnly smallnet). P.s:
The changed values are only the parameters where there is agreement
among the different time controls, so in other words, the tunings are
telling us that changing these specific values to this specific
direction is good in all time controls, so there shouldn't be a high
risk of regressing at longer time controls.

Passed STC:
LLR: 2.97 (-2.94,2.94) <0.00,2.00>
Total: 39552 W: 10329 L: 9999 D: 19224
Ptnml(0-2): 156, 4592, 9989, 4844, 195
https://tests.stockfishchess.org/tests/view/661be9a0bd68065432a088c0

Passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 56394 W: 14439 L: 14078 D: 27877
Ptnml(0-2): 30, 6152, 15480, 6497, 38
https://tests.stockfishchess.org/tests/view/661c746296961e72eb565406

closes official-stockfish#5187

Bench: 1836777
  • Loading branch information
FauziAkram authored and Disservin committed Apr 24, 2024
1 parent ddd250b commit fcba524
Show file tree
Hide file tree
Showing 3 changed files with 35 additions and 35 deletions.
14 changes: 7 additions & 7 deletions src/evaluate.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -58,14 +58,14 @@ Value Eval::evaluate(const Eval::NNUE::Networks& networks, const Position& pos,
Value nnue = smallNet ? networks.small.evaluate(pos, true, &nnueComplexity, psqtOnly)
: networks.big.evaluate(pos, true, &nnueComplexity, false);

const auto adjustEval = [&](int optDiv, int nnueDiv, int pawnCountConstant, int pawnCountMul,
int npmConstant, int evalDiv, int shufflingConstant,
int shufflingDiv) {
const auto adjustEval = [&](int optDiv, int nnueDiv, int npmDiv, int pawnCountConstant,
int pawnCountMul, int npmConstant, int evalDiv,
int shufflingConstant, int shufflingDiv) {
// Blend optimism and eval with nnue complexity and material imbalance
optimism += optimism * (nnueComplexity + std::abs(simpleEval - nnue)) / optDiv;
nnue -= nnue * (nnueComplexity * 5 / 3) / nnueDiv;

int npm = pos.non_pawn_material() / 64;
int npm = pos.non_pawn_material() / npmDiv;
v = (nnue * (npm + pawnCountConstant + pawnCountMul * pos.count<PAWN>())
+ optimism * (npmConstant + npm))
/ evalDiv;
Expand All @@ -76,11 +76,11 @@ Value Eval::evaluate(const Eval::NNUE::Networks& networks, const Position& pos,
};

if (!smallNet)
adjustEval(513, 32395, 919, 11, 145, 1036, 178, 204);
adjustEval(524, 32395, 66, 942, 11, 139, 1058, 178, 204);
else if (psqtOnly)
adjustEval(517, 32857, 908, 7, 155, 1019, 224, 238);
adjustEval(517, 32857, 65, 908, 7, 155, 1006, 224, 238);
else
adjustEval(499, 32793, 903, 9, 147, 1067, 208, 211);
adjustEval(515, 32793, 63, 944, 9, 140, 1067, 206, 206);

// Guarantee evaluation does not hit the tablebase range
v = std::clamp(v, VALUE_TB_LOSS_IN_MAX_PLY + 1, VALUE_TB_WIN_IN_MAX_PLY - 1);
Expand Down
10 changes: 5 additions & 5 deletions src/movepick.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -190,8 +190,8 @@ void MovePicker::score() {
m.value += bool(pos.check_squares(pt) & to) * 16384;

// bonus for escaping from capture
m.value += threatenedPieces & from ? (pt == QUEEN && !(to & threatenedByRook) ? 51000
: pt == ROOK && !(to & threatenedByMinor) ? 24950
m.value += threatenedPieces & from ? (pt == QUEEN && !(to & threatenedByRook) ? 51700
: pt == ROOK && !(to & threatenedByMinor) ? 25600
: !(to & threatenedByPawn) ? 14450
: 0)
: 0;
Expand All @@ -200,7 +200,7 @@ void MovePicker::score() {
m.value -= !(threatenedPieces & from)
? (pt == QUEEN ? bool(to & threatenedByRook) * 48150
+ bool(to & threatenedByMinor) * 10650
: pt == ROOK ? bool(to & threatenedByMinor) * 24500
: pt == ROOK ? bool(to & threatenedByMinor) * 24335
: pt != PAWN ? bool(to & threatenedByPawn) * 14950
: 0)
: 0;
Expand Down Expand Up @@ -241,7 +241,7 @@ Move MovePicker::select(Pred filter) {
// moves left, picking the move with the highest score from a list of generated moves.
Move MovePicker::next_move(bool skipQuiets) {

auto quiet_threshold = [](Depth d) { return -3550 * d; };
auto quiet_threshold = [](Depth d) { return -3560 * d; };

top:
switch (stage)
Expand Down Expand Up @@ -310,7 +310,7 @@ Move MovePicker::next_move(bool skipQuiets) {
return *cur != refutations[0] && *cur != refutations[1] && *cur != refutations[2];
}))
{
if ((cur - 1)->value > -8000 || (cur - 1)->value <= quiet_threshold(depth))
if ((cur - 1)->value > -7998 || (cur - 1)->value <= quiet_threshold(depth))
return *(cur - 1);

// Remaining quiets are bad
Expand Down
46 changes: 23 additions & 23 deletions src/search.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -57,9 +57,9 @@ static constexpr double EvalLevel[10] = {1.043, 1.017, 0.952, 1.009, 0.971,

// Futility margin
Value futility_margin(Depth d, bool noTtCutNode, bool improving, bool oppWorsening) {
Value futilityMult = 118 - 44 * noTtCutNode;
Value futilityMult = 118 - 45 * noTtCutNode;
Value improvingDeduction = 52 * improving * futilityMult / 32;
Value worseningDeduction = (310 + 48 * improving) * oppWorsening * futilityMult / 1024;
Value worseningDeduction = (316 + 48 * improving) * oppWorsening * futilityMult / 1024;

return futilityMult * d - improvingDeduction - worseningDeduction;
}
Expand All @@ -76,10 +76,10 @@ Value to_corrected_static_eval(Value v, const Worker& w, const Position& pos) {
}

// History and stats update bonus, based on depth
int stat_bonus(Depth d) { return std::clamp(211 * d - 315, 0, 1291); }
int stat_bonus(Depth d) { return std::clamp(214 * d - 318, 16, 1304); }

// History and stats update malus, based on depth
int stat_malus(Depth d) { return (d < 4 ? 572 * d - 285 : 1372); }
int stat_malus(Depth d) { return (d < 4 ? 572 * d - 284 : 1355); }

// Add a small random component to draw evaluations to avoid 3-fold blindness
Value value_draw(size_t nodes) { return VALUE_DRAW - 1 + Value(nodes & 0x2); }
Expand Down Expand Up @@ -303,12 +303,12 @@ void Search::Worker::iterative_deepening() {

// Reset aspiration window starting size
Value avg = rootMoves[pvIdx].averageScore;
delta = 11 + avg * avg / 11254;
delta = 10 + avg * avg / 11480;
alpha = std::max(avg - delta, -VALUE_INFINITE);
beta = std::min(avg + delta, VALUE_INFINITE);

// Adjust optimism based on root move's averageScore (~4 Elo)
optimism[us] = 125 * avg / (std::abs(avg) + 91);
optimism[us] = 122 * avg / (std::abs(avg) + 92);
optimism[~us] = -optimism[us];

// Start with a small aspiration window and, in the case of a fail
Expand Down Expand Up @@ -752,7 +752,7 @@ Value Search::Worker::search(
// If eval is really low check with qsearch if it can exceed alpha, if it can't,
// return a fail low.
// Adjust razor margin according to cutoffCnt. (~1 Elo)
if (eval < alpha - 471 - (276 - 148 * ((ss + 1)->cutoffCnt > 3)) * depth * depth)
if (eval < alpha - 471 - (275 - 148 * ((ss + 1)->cutoffCnt > 3)) * depth * depth)
{
value = qsearch<NonPV>(pos, ss, alpha - 1, alpha);
if (value < alpha)
Expand All @@ -763,14 +763,14 @@ Value Search::Worker::search(
// The depth condition is important for mate finding.
if (!ss->ttPv && depth < 12
&& eval - futility_margin(depth, cutNode && !ss->ttHit, improving, opponentWorsening)
- (ss - 1)->statScore / 284
- (ss - 1)->statScore / 286
>= beta
&& eval >= beta && eval < VALUE_TB_WIN_IN_MAX_PLY && (!ttMove || ttCapture))
return beta > VALUE_TB_LOSS_IN_MAX_PLY ? (eval + beta) / 2 : eval;

// Step 9. Null move search with verification search (~35 Elo)
if (!PvNode && (ss - 1)->currentMove != Move::null() && (ss - 1)->statScore < 18001
&& eval >= beta && ss->staticEval >= beta - 21 * depth + 315 && !excludedMove
&& eval >= beta && ss->staticEval >= beta - 21 * depth + 312 && !excludedMove
&& pos.non_pawn_material(us) && ss->ply >= thisThread->nmpMinPly
&& beta > VALUE_TB_LOSS_IN_MAX_PLY)
{
Expand Down Expand Up @@ -881,7 +881,7 @@ Value Search::Worker::search(
moves_loop: // When in check, search starts here

// Step 12. A small Probcut idea, when we are in check (~4 Elo)
probCutBeta = beta + 436;
probCutBeta = beta + 452;
if (ss->inCheck && !PvNode && ttCapture && (tte->bound() & BOUND_LOWER)
&& tte->depth() >= depth - 4 && ttValue >= probCutBeta
&& std::abs(ttValue) < VALUE_TB_WIN_IN_MAX_PLY && std::abs(beta) < VALUE_TB_WIN_IN_MAX_PLY)
Expand Down Expand Up @@ -964,15 +964,15 @@ Value Search::Worker::search(
{
Piece capturedPiece = pos.piece_on(move.to_sq());
Value futilityValue =
ss->staticEval + 288 + 277 * lmrDepth + PieceValue[capturedPiece]
ss->staticEval + 285 + 277 * lmrDepth + PieceValue[capturedPiece]
+ thisThread->captureHistory[movedPiece][move.to_sq()][type_of(capturedPiece)]
/ 7;
if (futilityValue <= alpha)
continue;
}

// SEE based pruning for captures and checks (~11 Elo)
if (!pos.see_ge(move, -199 * depth))
if (!pos.see_ge(move, -203 * depth))
continue;
}
else
Expand All @@ -992,10 +992,10 @@ Value Search::Worker::search(
lmrDepth += history / 5285;

Value futilityValue =
ss->staticEval + (bestValue < ss->staticEval - 54 ? 128 : 58) + 131 * lmrDepth;
ss->staticEval + (bestValue < ss->staticEval - 54 ? 128 : 57) + 131 * lmrDepth;

// Futility pruning: parent node (~13 Elo)
if (!ss->inCheck && lmrDepth < 15 && futilityValue <= alpha)
if (!ss->inCheck && lmrDepth < 14 && futilityValue <= alpha)
{
if (bestValue <= futilityValue && std::abs(bestValue) < VALUE_TB_WIN_IN_MAX_PLY
&& futilityValue < VALUE_TB_WIN_IN_MAX_PLY)
Expand All @@ -1006,7 +1006,7 @@ Value Search::Worker::search(
lmrDepth = std::max(lmrDepth, 0);

// Prune moves with negative SEE (~4 Elo)
if (!pos.see_ge(move, -26 * lmrDepth * lmrDepth))
if (!pos.see_ge(move, -27 * lmrDepth * lmrDepth))
continue;
}
}
Expand All @@ -1026,11 +1026,11 @@ Value Search::Worker::search(
// so changing them requires tests at these types of time controls.
// Recursive singular search is avoided.
if (!rootNode && move == ttMove && !excludedMove
&& depth >= 4 - (thisThread->completedDepth > 32) + ss->ttPv
&& depth >= 4 - (thisThread->completedDepth > 33) + ss->ttPv
&& std::abs(ttValue) < VALUE_TB_WIN_IN_MAX_PLY && (tte->bound() & BOUND_LOWER)
&& tte->depth() >= depth - 3)
{
Value singularBeta = ttValue - (64 + 59 * (ss->ttPv && !PvNode)) * depth / 64;
Value singularBeta = ttValue - (65 + 59 * (ss->ttPv && !PvNode)) * depth / 63;
Depth singularDepth = newDepth / 2;

ss->excludedMove = move;
Expand Down Expand Up @@ -1134,10 +1134,10 @@ Value Search::Worker::search(
ss->statScore = 2 * thisThread->mainHistory[us][move.from_to()]
+ (*contHist[0])[movedPiece][move.to_sq()]
+ (*contHist[1])[movedPiece][move.to_sq()]
+ (*contHist[3])[movedPiece][move.to_sq()] - 5007;
+ (*contHist[3])[movedPiece][move.to_sq()] - 5024;

// Decrease/increase reduction for moves with a good/bad history (~8 Elo)
r -= ss->statScore / 12901;
r -= ss->statScore / 13182;

// Step 17. Late moves reduction / extension (LMR, ~117 Elo)
if (depth >= 2 && moveCount > 1 + rootNode)
Expand Down Expand Up @@ -1274,7 +1274,7 @@ Value Search::Worker::search(
else
{
// Reduce other moves if we have found at least one score improvement (~2 Elo)
if (depth > 2 && depth < 12 && beta < 13132 && value > -13295)
if (depth > 2 && depth < 12 && beta < 13546 && value > -13478)
depth -= 2;

assert(depth > 0);
Expand Down Expand Up @@ -1319,7 +1319,7 @@ Value Search::Worker::search(
{
int bonus = (depth > 5) + (PvNode || cutNode) + ((ss - 1)->statScore < -14761)
+ ((ss - 1)->moveCount > 11)
+ (!ss->inCheck && bestValue <= ss->staticEval - 144);
+ (!ss->inCheck && bestValue <= ss->staticEval - 142);
update_continuation_histories(ss - 1, pos.piece_on(prevSq), prevSq,
stat_bonus(depth) * bonus);
thisThread->mainHistory[~us][((ss - 1)->currentMove).from_to()]
Expand Down Expand Up @@ -1477,7 +1477,7 @@ Value Search::Worker::qsearch(Position& pos, Stack* ss, Value alpha, Value beta,
if (bestValue > alpha)
alpha = bestValue;

futilityBase = ss->staticEval + 246;
futilityBase = ss->staticEval + 250;
}

const PieceToHistory* contHist[] = {(ss - 1)->continuationHistory,
Expand Down Expand Up @@ -1625,7 +1625,7 @@ Value Search::Worker::qsearch(Position& pos, Stack* ss, Value alpha, Value beta,

Depth Search::Worker::reduction(bool i, Depth d, int mn, int delta) {
int reductionScale = reductions[d] * reductions[mn];
return (reductionScale + 1123 - delta * 832 / rootDelta) / 1024 + (!i && reductionScale > 1025);
return (reductionScale + 1150 - delta * 832 / rootDelta) / 1024 + (!i && reductionScale > 1025);
}

TimePoint Search::Worker::elapsed() const {
Expand Down

0 comments on commit fcba524

Please sign in to comment.