Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Torch] Emit and decompose prims.iota op #3132

Merged
merged 2 commits into from
Apr 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -15909,6 +15909,34 @@ def Torch_PrimsViewOfOp : Torch_Op<"prims.view_of", [
let hasFolder = 1;
}

def Torch_PrimsIotaOp : Torch_Op<"prims.iota", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `prims::iota : (int, int, int, int, Device, bool) -> (Tensor)`";
let arguments = (ins
Torch_IntType:$length,
Torch_IntType:$start,
Torch_IntType:$step,
Torch_IntType:$dtype,
Torch_DeviceType:$device,
Torch_BoolType:$requires_grad
);
let results = (outs
AnyTorchOptionalTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult PrimsIotaOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 6, 1);
}
void PrimsIotaOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 6, 1);
}
}];
}

def Torch_QuantizedLinearOp : Torch_Op<"quantized.linear", [
HasValueSemantics,
AllowsTypeRefinement,
Expand Down
7 changes: 7 additions & 0 deletions lib/Dialect/Torch/Transforms/AbstractInterpLibrary.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -8653,6 +8653,13 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" return %0#1 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.prims.iota\"(%arg0: !torch.int, %arg1: !torch.int, %arg2: !torch.int, %arg3: !torch.int, %arg4: !torch.Device, %arg5: !torch.bool) -> !torch.list<int> {\n"
" %0 = torch.prim.ListConstruct %arg0 : (!torch.int) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.prims.iota\"(%arg0: !torch.int, %arg1: !torch.int, %arg2: !torch.int, %arg3: !torch.int, %arg4: !torch.Device, %arg5: !torch.bool) -> !torch.int {\n"
" return %arg3 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.prim.NumToTensor.Scalar\"(%arg0: !torch.float) -> !torch.list<int> {\n"
" %0 = torch.prim.ListConstruct : () -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
Expand Down
30 changes: 30 additions & 0 deletions lib/Dialect/Torch/Transforms/DecomposeComplexOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -4789,6 +4789,35 @@ class DecomposeAtenArangeStartOp : public OpRewritePattern<AtenArangeStartOp> {
};
} // namespace

namespace {
// The `prims.iota` op is converted to `aten.arange.startStep` op.
stellaraccident marked this conversation as resolved.
Show resolved Hide resolved
class DecomposePrimsIotaOp : public OpRewritePattern<PrimsIotaOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(PrimsIotaOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
int64_t length, start, step;
if (!matchPattern(op.getLength(), m_TorchConstantInt(&length)))
return rewriter.notifyMatchFailure(
op, "unimplemented: low must be a constant integer");
if (!matchPattern(op.getStart(), m_TorchConstantInt(&start)))
return rewriter.notifyMatchFailure(
op, "unimplemented: low must be a constant integer");
if (!matchPattern(op.getStep(), m_TorchConstantInt(&step)))
return rewriter.notifyMatchFailure(
op, "unimplemented: low must be a constant integer");
auto endVal = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(start + length * step));
auto none = rewriter.create<ConstantNoneOp>(loc);
rewriter.replaceOpWithNewOp<AtenArangeStartStepOp>(
op, op.getType(), op.getStart(), endVal, op.getStep(), op.getDtype(),
none, op.getDevice(), none);
return success();
}
};
} // namespace

namespace {
// Decompose constant tensor full like ops.
template <typename OpTy, int fillVal>
Expand Down Expand Up @@ -7605,6 +7634,7 @@ class DecomposeComplexOpsPass
addPatternIfTargetOpIsIllegal<DecomposeAtenConvTranspose2dOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenArangeOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenArangeStartOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposePrimsIotaOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenLinspaceOp>(patterns);
addPatternIfTargetOpIsIllegal<
DecomposeAtenArgMinMaxOp<AtenArgmaxOp, AtenMaxDimOp>>(patterns);
Expand Down
5 changes: 5 additions & 0 deletions projects/pt1/e2e_testing/xfail_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -1228,6 +1228,7 @@
"PrimMinIntDynamicModule_basic",
"PrimMinIntModule_basic",
"PrimsConvertElementTypeModule_basic",
"PrimsIotaModule_basic",
"PrimsSqueezeEmptyDimensionsModule_basic",
"PrimsViewOfModule_basic",
"PrimsViewOfZeroRankModule_basic",
Expand Down Expand Up @@ -1789,6 +1790,7 @@
"PermuteModule_basic",
"PermuteNegativeIndexModule_basic",
"PrimListUnpackNumMismatchModule_basic",
"PrimsIotaModule_basic",
"PrimsSqueezeEmptyDimensionsModule_basic",
"PrimsSqueezeModule_basic",
"PrimsViewOfModule_basic",
Expand Down Expand Up @@ -2683,6 +2685,9 @@
"SqueezeModule_allUnitDim",
"SqueezeModule_broadcast",
"SqueezeModule_static",

# RuntimeError: unsupported input type: Device
"PrimsIotaModule_basic",

# Failure - unknown
"BernoulliModule_basic",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1319,6 +1319,12 @@ def prims〇view_of〡dtype(a_rank_dtype: Tuple[int, int]) -> int:
_, a_dtype = a_rank_dtype
return a_dtype

def prims〇iota〡shape(length: int, start: int, step: int, dtype: int, device: device, requires_grad: bool) -> List[int]:
return [length]

def prims〇iota〡dtype(length: int, start: int, step: int, dtype: int, device: device, requires_grad: bool) -> int:
return dtype

def prim〇NumToTensor〇Scalar〡shape(a: float) -> List[int]:
return []

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -897,6 +897,7 @@ def emit_with_mutating_variants(key, **kwargs):
emit("prims::split_dim : (Tensor, int, int) -> (Tensor)")
emit("prims::squeeze : (Tensor, int[]) -> (Tensor)")
emit("prims::view_of : (Tensor) -> (Tensor)", has_folder=True)
emit("prims::iota : (int, int, int, int, Device, bool) -> (Tensor)")

# ==========================================================================
# `quantized::` namespace.
Expand Down
17 changes: 17 additions & 0 deletions projects/pt1/python/torch_mlir_e2e_test/test_suite/arange.py
Original file line number Diff line number Diff line change
Expand Up @@ -380,3 +380,20 @@ def forward(self):
@register_test_case(module_factory=lambda: LinspaceTwoSizeModule())
def LinspaceTwoSizeModule_basic(module, tu: TestUtils):
module.forward()


class PrimsIotaModule(torch.nn.Module):
def __init__(self):
super().__init__()

@export
@annotate_args([
None,
])
def forward(self):
return torch.ops.prims.iota(77, start=0, step=1, dtype=torch.int64, device='cpu',
requires_grad=False)

@register_test_case(module_factory=lambda: PrimsIotaModule())
def PrimsIotaModule_basic(module, tu: TestUtils):
module.forward()
Loading