Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[mlir][linalg] Add linalg.conv_2d_ngchw_gfchw_q to named ops #92136

Merged
merged 4 commits into from
May 29, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
138 changes: 138 additions & 0 deletions mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -3421,6 +3421,144 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: K
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: conv_2d_ngchw_gfchw_q
cpp_class_name: Conv2DNgchwGfchwQOp
doc: |-
Performs 2-D grouped convolution with zero-point offsets.

Layout:
* Input: NGCHW.
* Kernel: GFCHW.

Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output. This includes the zero
point offsets common to quantized operations.
implements:
- LinalgConvolutionOpInterface
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
name: I
kind: input_tensor
type_var: T1
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
(s0, s1, s2, s3 * s4 + s5 * s6, s7 * s8 + s9 * s10)>
- !LinalgOperandDefConfig
name: K
kind: input_tensor
type_var: T2
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
(s1, s11, s2, s5, s9)>
- !LinalgOperandDefConfig
name: IZp
kind: scalar
type_var: I32
- !LinalgOperandDefConfig
name: KZp
kind: scalar
type_var: I32
- !LinalgOperandDefConfig
name: O
kind: output_tensor
type_var: U
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
(s0, s1, s11, s3, s7)>
- !LinalgOperandDefConfig
name: strides
kind: index_attr
index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11]
-> (s4, s8)>
default_indices:
- 1
- 1
- !LinalgOperandDefConfig
name: dilations
kind: index_attr
index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11]
-> (s6, s10)>
default_indices:
- 1
- 1
indexing_maps: !LinalgIndexingMapsConfig
static_indexing_maps:
- affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
s8, s9, s10, s11] -> (d0, d1, d5, d3 * s4 + d6 * s6, d4 * s8 + d7 * s10)>
- affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
s8, s9, s10, s11] -> (d1, d2, d5, d6, d7)>
- affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
s8, s9, s10, s11] -> ()>
- affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
s8, s9, s10, s11] -> ()>
- affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
s8, s9, s10, s11] -> (d0, d1, d2, d3, d4)>
iterator_types:
- parallel
- parallel
- parallel
- parallel
- parallel
- reduction
- reduction
- reduction
assignments:
- !ScalarAssign
arg: O
value: !ScalarExpression
scalar_fn:
kind: binary
fn_name: add
operands:
- !ScalarExpression
scalar_arg: O
- !ScalarExpression
scalar_fn:
kind: binary
fn_name: mul
operands:
- !ScalarExpression
scalar_fn:
kind: binary
fn_name: sub
operands:
- !ScalarExpression
scalar_fn:
kind: type
fn_name: cast_signed
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
- !ScalarExpression
scalar_fn:
kind: type
fn_name: cast_signed
type_var: U
operands:
- !ScalarExpression
scalar_arg: IZp
- !ScalarExpression
scalar_fn:
kind: binary
fn_name: sub
operands:
- !ScalarExpression
scalar_fn:
kind: type
fn_name: cast_signed
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
- !ScalarExpression
scalar_fn:
kind: type
fn_name: cast_signed
type_var: U
operands:
- !ScalarExpression
scalar_arg: KZp
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: conv_3d_ndhwc_dhwcf
cpp_class_name: Conv3DNdhwcDhwcfOp
Expand Down
34 changes: 34 additions & 0 deletions mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -937,6 +937,40 @@ def conv_2d_ngchw_gfchw(
U, I[D.n, D.g, D.c, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW]
) * TypeFn.cast_signed(U, K[D.g, D.fg, D.c, D.kh, D.kw])

@linalg_structured_op
def conv_2d_ngchw_gfchw_q(
I=TensorDef(
T1, S.N, S.G, S.C, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW
),
K=TensorDef(T2, S.G, S.FG, S.C, S.KH, S.KW),
IZp=ScalarDef(I32),
KZp=ScalarDef(I32),
O=TensorDef(U, S.N, S.G, S.FG, S.OH, S.OW, output=True),
strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]),
dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]),
):
"""Performs 2-D grouped convolution with zero-point offsets.

Layout:
* Input: NGCHW.
* Kernel: GFCHW.

Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output. This includes the zero
point offsets common to quantized operations.
"""
implements(ConvolutionOpInterface)
domain(D.n, D.g, D.fg, D.oh, D.ow, D.c, D.kh, D.kw)
O[D.n, D.g, D.fg, D.oh, D.ow] += (
TypeFn.cast_signed(
U, I[D.n, D.g, D.c, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW]
)
- TypeFn.cast_signed(U, IZp)
) * (
TypeFn.cast_signed(U, K[D.g, D.fg, D.c, D.kh, D.kw])
- TypeFn.cast_signed(U, KZp)
)


@linalg_structured_op
def conv_3d_ndhwc_dhwcf(
Expand Down
31 changes: 31 additions & 0 deletions mlir/test/Dialect/Linalg/generalize-named-ops.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -204,6 +204,37 @@ func.func @conv_1d_ncw_fcw(%input: memref<?x?x?xf32>, %filter: memref<?x?x?xf32>

// -----

func.func @conv_2d_ngchw_gfchw_q(%input: memref<?x?x?x?x?xi8>, %filter: memref<?x?x?x?x?xi8>, %inputzp: i32, %filterzp: i32, %output: memref<?x?x?x?x?xi32>) {
linalg.conv_2d_ngchw_gfchw_q {dilations = dense<1> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>}
ins (%input, %filter, %inputzp, %filterzp: memref<?x?x?x?x?xi8>, memref<?x?x?x?x?xi8>, i32, i32)
outs (%output: memref<?x?x?x?x?xi32>)
return
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d5, d3 + d6, d4 + d7)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d1, d2, d5, d6, d7)>
// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> ()>
// CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d2, d3, d4)>

// CHECK: func @conv_2d_ngchw_gfchw_q

// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]], #[[MAP2]], #[[MAP3]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]}
// CHECK-SAME: ins(%{{.+}}, %{{.+}}, %{{.+}}, %{{.+}} : memref<?x?x?x?x?xi8>, memref<?x?x?x?x?xi8>, i32, i32)
// CHECK-SAME: outs(%{{.+}} : memref<?x?x?x?x?xi32>)

// CHECK: ^{{.+}}(%[[BBARG0:.+]]: i8, %[[BBARG1:.+]]: i8, %[[BBARG2:.+]]: i32, %[[BBARG3:.+]]: i32, %[[BBARG4:.+]]: i32)
// CHECK-NEXT: %[[EXTSI0:.+]] = arith.extsi %[[BBARG0]] : i8 to i32
// CHECK-NEXT: %[[SUB0:.+]] = arith.subi %[[EXTSI0]], %[[BBARG2]] : i32
// CHECK-NEXT: %[[EXTSI1:.+]] = arith.extsi %[[BBARG1]] : i8 to i32
// CHECK-NEXT: %[[SUB1:.+]] = arith.subi %[[EXTSI1]], %[[BBARG3]] : i32
// CHECK-NEXT: %[[MUL:.+]] = arith.muli %[[SUB0]], %[[SUB1]] : i32
// CHECK-NEXT: %[[ADD:.+]] = arith.addi %[[BBARG4]], %[[MUL]] : i32
// CHECK-NEXT: linalg.yield %[[ADD]] : i32

// -----

func.func @generalize_fill(%output: memref<?x?xf32>, %value : f32) {
linalg.fill ins(%value : f32) outs(%output : memref<?x?xf32>)
return
Expand Down
15 changes: 15 additions & 0 deletions mlir/test/Dialect/Linalg/named-ops.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -441,6 +441,21 @@ func.func @conv_2d_ngchw_gfchw(%input: tensor<1x5x3x32x32xf32>, %filter: tensor<

// -----

// CHECK-LABEL: func @conv_2d_ngchw_gfchw_q
func.func @conv_2d_ngchw_gfchw_q(%input: tensor<1x5x3x32x32xi8>, %filter: tensor<5x2x3x3x3xi8>, %inputzp: i32, %filterzp: i32, %init: tensor<1x5x2x30x30xi32>) -> tensor<1x5x2x30x30xi32> {
// CHECK: linalg.conv_2d_ngchw_gfchw_q
// CHECK-SAME: dilations = dense<1> : tensor<2xi64>
// CHECK-SAME: strides = dense<1> : tensor<2xi64>
// CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x5x3x32x32xi8>, tensor<5x2x3x3x3xi8>, i32, i32)
// CHECK-SAME: outs(%{{.+}} : tensor<1x5x2x30x30xi32>) -> tensor<1x5x2x30x30xi32>
%0 = linalg.conv_2d_ngchw_gfchw_q {dilations = dense<1> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>}
ins (%input, %filter, %inputzp, %filterzp: tensor<1x5x3x32x32xi8>, tensor<5x2x3x3x3xi8>, i32, i32)
outs (%init: tensor<1x5x2x30x30xi32>) -> tensor<1x5x2x30x30xi32>
return %0 : tensor<1x5x2x30x30xi32>
}
// -----

// CHECK-LABEL: func @conv_3d_ndhwc_dhwcf
func.func @conv_3d_ndhwc_dhwcf(%input: tensor<?x?x?x?x?xf32>, %filter: tensor<?x?x?x?x?xf32>, %init: tensor<?x?x?x?x?xf32>) -> tensor<?x?x?x?x?xf32> {
// CHECK: %{{.+}} = linalg.conv_3d_ndhwc_dhwcf
Expand Down
Loading