-
Notifications
You must be signed in to change notification settings - Fork 12.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[mlir][sparse] external entry method wrapper for sparse tensors #80326
Conversation
Similar to the emit_c_interface, this pull request adds a pass that converts public entry methods that use sparse tensors as input parameters and/or output return values into wrapper functions that [dis]assemble the individual tensors that constitute the actual storage used externally into MLIR sparse tensors. This pass can be used to prepare the public entry methods of a program that is compiled by the MLIR sparsifier to interface with an external runtime, e.g., when passing sparse tensors as numpy arrays from and to Python. Note that eventual bufferization decisions (e.g. who [de]allocates the underlying memory) should be resolved in agreement with the external runtime (Python, PyTorch, JAX, etc.)
@llvm/pr-subscribers-mlir Author: Aart Bik (aartbik) ChangesSimilar to the emit_c_interface, this pull request adds a pass that converts public entry methods that use sparse tensors as input parameters and/or output return values into wrapper functions that [dis]assemble the individual tensors that constitute the actual storage used externally into MLIR sparse tensors. This pass can be used to prepare the public entry methods of a program that is compiled by the MLIR sparsifier to interface with an external runtime, e.g., when passing sparse tensors as numpy arrays from and to Python. Note that eventual bufferization decisions (e.g. who [de]allocates the underlying memory) should be resolved in agreement with the external runtime (Python, PyTorch, JAX, etc.) Full diff: https://github.com/llvm/llvm-project/pull/80326.diff 6 Files Affected:
diff --git a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h
index e93e2aefb344f..252908b026968 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h
+++ b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h
@@ -50,6 +50,14 @@ enum class ReinterpretMapScope {
#define GEN_PASS_DECL
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc"
+//===----------------------------------------------------------------------===//
+// The SparseAssembler pass.
+//===----------------------------------------------------------------------===//
+
+void populateSparseAssembler(RewritePatternSet &patterns);
+
+std::unique_ptr<Pass> createSparseAssembler();
+
//===----------------------------------------------------------------------===//
// The SparseReinterpretMap pass.
//===----------------------------------------------------------------------===//
diff --git a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
index f38779ed9ed2b..f0e5e8286c49f 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
+++ b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
@@ -11,6 +11,26 @@
include "mlir/Pass/PassBase.td"
+def SparseAssembler : Pass<"sparse-assembler", "ModuleOp"> {
+ let summary = "Add [dis]assemble operations on external sparse tensors";
+ let description = [{
+ A pass that converts public entry methods that use sparse tensors as
+ input parameters and/or output return values into wrapper functions
+ that [dis]assemble the individual tensors that constitute the actual
+ storage used externally into MLIR sparse tensors. This pass can be used
+ to prepare the public entry methods of a program that is compiled by the
+ MLIR sparsifier to interface with an external runtime, e.g., when passing
+ sparse tensors as numpy arrays from and to Python. Note that eventual
+ bufferization decisions (e.g. who [de]allocates the underlying memory)
+ should be resolved in agreement with the external runtime.
+ }];
+ let constructor = "mlir::createSparseAssembler()";
+ let dependentDialects = [
+ "sparse_tensor::SparseTensorDialect",
+ "tensor::TensorDialect",
+ ];
+}
+
def SparseReinterpretMap : Pass<"sparse-reinterpret-map", "ModuleOp"> {
let summary = "Reinterprets sparse tensor type mappings";
let description = [{
@@ -183,7 +203,6 @@ def LowerForeachToSCF : Pass<"lower-sparse-foreach-to-scf", "func::FuncOp"> {
];
}
-
def SparseTensorConversionPass : Pass<"sparse-tensor-conversion", "ModuleOp"> {
let summary = "Convert sparse tensors and primitives to library calls";
let description = [{
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/CMakeLists.txt b/mlir/lib/Dialect/SparseTensor/Transforms/CMakeLists.txt
index 456e45a040193..3c0f82fc00bb9 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/CMakeLists.txt
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/CMakeLists.txt
@@ -1,6 +1,7 @@
add_mlir_dialect_library(MLIRSparseTensorTransforms
# Rewriting.
BufferizableOpInterfaceImpl.cpp
+ SparseAssembler.cpp
SparseBufferRewriting.cpp
SparseGPUCodegen.cpp
SparseReinterpretMap.cpp
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseAssembler.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseAssembler.cpp
new file mode 100644
index 0000000000000..f7cf1f4091a12
--- /dev/null
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseAssembler.cpp
@@ -0,0 +1,236 @@
+//===- SparseAssembler.cpp - adds wrapper method around sparse types ------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "Utils/CodegenUtils.h"
+
+#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
+#include "mlir/Dialect/SparseTensor/IR/SparseTensorStorageLayout.h"
+#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
+#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "llvm/Support/FormatVariadic.h"
+
+using namespace mlir;
+using namespace sparse_tensor;
+
+//===----------------------------------------------------------------------===//
+// Helper methods.
+//===----------------------------------------------------------------------===//
+
+// Convert type range to new types range, with sparse tensors externalized.
+void convTypes(TypeRange types, SmallVectorImpl<Type> &convTypes,
+ SmallVectorImpl<Type> *extraTypes = nullptr) {
+ for (auto type : types) {
+ if (auto rtp = dyn_cast<RankedTensorType>(type)) {
+ const SparseTensorType stt(rtp);
+ if (stt.hasEncoding()) {
+ auto shape = {ShapedType::kDynamic};
+ // Convert the external representation of the values array.
+ auto vtp = RankedTensorType::get(shape, stt.getElementType());
+ convTypes.push_back(vtp);
+ if (extraTypes)
+ extraTypes->push_back(vtp);
+ // Convert the external representations of the pos/crd arrays.
+ for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
+ const auto lt = stt.getLvlType(lvl);
+ if (isCompressedLT(lt) || isLooseCompressedLT(lt)) {
+ auto ptp = RankedTensorType::get(shape, stt.getPosType());
+ auto ctp = RankedTensorType::get(shape, stt.getCrdType());
+ convTypes.push_back(ptp);
+ convTypes.push_back(ctp);
+ if (extraTypes) {
+ extraTypes->push_back(ptp);
+ extraTypes->push_back(ctp);
+ }
+ } else {
+ assert(isDenseLT(lt)); // TODO: handle other cases
+ }
+ }
+ continue;
+ }
+ }
+ // All other data passes through unmodified.
+ convTypes.push_back(type);
+ }
+}
+
+// Convert input and output values to [dis[assemble ops for sparse tensors.
+void convVals(OpBuilder &builder, Location loc, TypeRange types,
+ ValueRange fromVals, ValueRange extraVals,
+ SmallVectorImpl<Value> &toVals, unsigned extra, bool isIn) {
+ unsigned idx = 0;
+ for (auto type : types) {
+ if (auto rtp = dyn_cast<RankedTensorType>(type)) {
+ const SparseTensorType stt(rtp);
+ if (stt.hasEncoding()) {
+ auto shape = {ShapedType::kDynamic};
+ SmallVector<Value> inputs;
+ SmallVector<Type> retTypes;
+ SmallVector<Type> cntTypes;
+ // Collect the external representation of the values array for
+ // input or the outgoing sparse tensor for output.
+ inputs.push_back(fromVals[idx++]);
+ if (!isIn) {
+ inputs.push_back(extraVals[extra++]);
+ retTypes.push_back(
+ RankedTensorType::get(shape, stt.getElementType()));
+ cntTypes.push_back(builder.getIndexType());
+ }
+ // Collect the external representations of the pos/crd arrays.
+ for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
+ const auto lt = stt.getLvlType(lvl);
+ if (isCompressedLT(lt) || isLooseCompressedLT(lt)) {
+ if (isIn) {
+ inputs.push_back(fromVals[idx++]);
+ inputs.push_back(fromVals[idx++]);
+ } else {
+ Type pTp = stt.getPosType();
+ Type cTp = stt.getCrdType();
+ inputs.push_back(extraVals[extra++]);
+ inputs.push_back(extraVals[extra++]);
+ retTypes.push_back(RankedTensorType::get(shape, pTp));
+ retTypes.push_back(RankedTensorType::get(shape, cTp));
+ cntTypes.push_back(pTp);
+ cntTypes.push_back(cTp);
+ }
+ } else {
+ assert(isDenseLT(lt)); // TODO: handle other cases
+ }
+ }
+ if (isIn) {
+ // Assemble multiple inputs into a single sparse tensor.
+ auto a = builder.create<sparse_tensor::AssembleOp>(loc, rtp, inputs);
+ toVals.push_back(a.getResult());
+ } else {
+ // Disassemble a single sparse input into multiple outputs.
+ // Note that this includes the counters, which are dropped.
+ unsigned len = retTypes.size();
+ retTypes.append(cntTypes);
+ auto d = builder.create<sparse_tensor::DisassembleOp>(loc, retTypes,
+ inputs);
+ for (unsigned i = 0; i < len; i++)
+ toVals.push_back(d.getResult(i));
+ }
+ continue;
+ }
+ }
+ // Passes through unmodified.
+ toVals.push_back(fromVals[idx++]);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Rewriting rules.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+// A rewriting rules that converts public entry methods that use sparse tensors
+// as input parameters and/or output return values into wrapper functions
+// that [dis]assemble the individual tensors that constitute the actual
+// storage used externally into MLIR sparse tensors.
+//
+// In particular, each sparse tensor input
+//
+// void foo(..., t, ...) { }
+//
+// adds the following strucuture in a wrapper
+//
+// void sp_face_foo(..., t1..tn, ...) {
+// t = assemble t1..tn
+// foo(..., t, ...)
+// }
+//
+// and likewise, each output tensor
+//
+// ... T ... bar(...) { return ..., t, ...; }
+//
+// adds the following structure in a wrapper
+//
+// ... T1..TN ... sp_face_bar(..., t1'..tn') {
+// ..., t, ... = bar(...)
+// t1..tn = disassemble t, t1'..tn'
+// return ..., t1..tn, ...
+// }
+//
+// TODO: refine output sparse tensors to work well with external framework
+//
+struct SparseFuncAssembler : public OpRewritePattern<func::FuncOp> {
+ using OpRewritePattern::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(func::FuncOp funcOp,
+ PatternRewriter &rewriter) const override {
+ // Only a rewrite an entry with the c-interface requested.
+ if (!funcOp->getAttrOfType<UnitAttr>(
+ LLVM::LLVMDialect::getEmitCWrapperAttrName()))
+ return failure();
+
+ // Translate sparse tensor types to external types.
+ SmallVector<Type> inputTypes;
+ SmallVector<Type> outputTypes;
+ SmallVector<Type> extraTypes;
+ convTypes(funcOp.getArgumentTypes(), inputTypes);
+ convTypes(funcOp.getResultTypes(), outputTypes, &extraTypes);
+
+ // Only sparse inputs or outputs need a wrapper function.
+ if (inputTypes.size() == funcOp.getArgumentTypes().size() &&
+ outputTypes.size() == funcOp.getResultTypes().size())
+ return failure();
+
+ // Start the new wrapper function. Together with the c-interface mangling,
+ // a sparse external entry point eventually will have a name like:
+ // _mlir_ciface_spiface_XXX(...)
+ Location loc = funcOp.getLoc();
+ ModuleOp modOp = funcOp->getParentOfType<ModuleOp>();
+ MLIRContext *context = modOp.getContext();
+ OpBuilder moduleBuilder(modOp.getBodyRegion());
+ std::string wrapper = llvm::formatv("spiface_{0}", funcOp.getName()).str();
+ unsigned extra = inputTypes.size();
+ inputTypes.append(extraTypes);
+ auto func = moduleBuilder.create<func::FuncOp>(
+ loc, wrapper, FunctionType::get(context, inputTypes, outputTypes));
+ func.setPublic();
+ func->setAttr(LLVM::LLVMDialect::getEmitCWrapperAttrName(),
+ UnitAttr::get(context));
+
+ // Construct new wrapper function body.
+ auto org = SymbolRefAttr::get(context, funcOp.getName());
+ OpBuilder::InsertionGuard insertionGuard(rewriter);
+ Block *body = func.addEntryBlock();
+ rewriter.setInsertionPointToStart(body);
+
+ // Convert inputs.
+ SmallVector<Value> inputs;
+ convVals(rewriter, loc, funcOp.getArgumentTypes(), body->getArguments(),
+ ValueRange(), inputs, 0, /*isIn=*/true);
+
+ // Call original function.
+ auto call = rewriter.create<func::CallOp>(loc, funcOp.getResultTypes(), org,
+ inputs);
+
+ // Convert outputs and return.
+ SmallVector<Value> outputs;
+ convVals(rewriter, loc, funcOp.getResultTypes(), call.getResults(),
+ body->getArguments(), outputs, extra, /*isIn=*/false);
+ rewriter.create<func::ReturnOp>(loc, outputs);
+
+ // Strip the c-interface attribute from the original function.
+ funcOp->removeAttr(LLVM::LLVMDialect::getEmitCWrapperAttrName());
+ return success();
+ }
+};
+
+} // namespace
+
+//===----------------------------------------------------------------------===//
+// Public method for populating conversion rules.
+//===----------------------------------------------------------------------===//
+
+void mlir::populateSparseAssembler(RewritePatternSet &patterns) {
+ patterns.add<SparseFuncAssembler>(patterns.getContext());
+}
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
index 375e10f9068e4..b7e752dc419e4 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
@@ -22,6 +22,7 @@
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir {
+#define GEN_PASS_DEF_SPARSEASSEMBLER
#define GEN_PASS_DEF_SPARSEREINTERPRETMAP
#define GEN_PASS_DEF_PRESPARSIFICATIONREWRITE
#define GEN_PASS_DEF_SPARSIFICATIONPASS
@@ -46,6 +47,18 @@ namespace {
// Passes implementation.
//===----------------------------------------------------------------------===//
+struct SparseAssembler : public impl::SparseAssemblerBase<SparseAssembler> {
+ SparseAssembler() = default;
+ SparseAssembler(const SparseAssembler &pass) = default;
+
+ void runOnOperation() override {
+ auto *ctx = &getContext();
+ RewritePatternSet patterns(ctx);
+ populateSparseAssembler(patterns);
+ (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
+ }
+};
+
struct SparseReinterpretMap
: public impl::SparseReinterpretMapBase<SparseReinterpretMap> {
SparseReinterpretMap() = default;
diff --git a/mlir/test/Dialect/SparseTensor/external.mlir b/mlir/test/Dialect/SparseTensor/external.mlir
new file mode 100644
index 0000000000000..57df8aca3a6a5
--- /dev/null
+++ b/mlir/test/Dialect/SparseTensor/external.mlir
@@ -0,0 +1,97 @@
+// RUN: mlir-opt %s --sparse-assembler -split-input-file | FileCheck %s
+
+// -----
+
+// CHECK-LABEL: func.func @nop(
+// CHECK-SAME: %[[A:.*]]: tensor<100xf32>) -> tensor<100xf32> attributes {llvm.emit_c_interface} {
+// CHECK: return %[[A]] : tensor<100xf32>
+// CHECK: }
+func.func @nop(%arg0: tensor<100xf32>) -> tensor<100xf32> attributes { llvm.emit_c_interface } {
+ return %arg0 : tensor<100xf32>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @spiface_sparse_in(
+// CHECK-SAME: %[[A:.*]]: tensor<?xf32>,
+// CHECK-SAME: %[[B:.*]]: tensor<?xindex>,
+// CHECK-SAME: %[[C:.*]]: tensor<?xindex>) -> tensor<64x64xf32> attributes {llvm.emit_c_interface} {
+// CHECK: %[[I:.*]] = sparse_tensor.assemble %[[A]], %[[B]], %[[C]]
+// CHECK: %[[F:.*]] = call @sparse_in(%[[I]])
+// CHECK: return %[[F]] : tensor<64x64xf32>
+// CHECK: }
+#sparse = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
+func.func @sparse_in(%arg0: tensor<64x64xf32, #sparse>) -> tensor<64x64xf32> attributes { llvm.emit_c_interface } {
+ %0 = sparse_tensor.convert %arg0 : tensor<64x64xf32, #sparse> to tensor<64x64xf32>
+ return %0 : tensor<64x64xf32>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @spiface_sparse_in2(
+// CHECK-SAME: %[[X:.*]]: tensor<100xf32>,
+// CHECK-SAME: %[[A:.*]]: tensor<?xf32>,
+// CHECK-SAME: %[[B:.*]]: tensor<?xindex>,
+// CHECK-SAME: %[[C:.*]]: tensor<?xindex>) -> tensor<64x64xf32> attributes {llvm.emit_c_interface} {
+// CHECK: %[[I:.*]] = sparse_tensor.assemble %[[A]], %[[B]], %[[C]]
+// CHECK: %[[F:.*]] = call @sparse_in2(%[[X]], %[[I]])
+// CHECK: return %[[F]] : tensor<64x64xf32>
+// CHECK: }
+#sparse = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
+func.func @sparse_in2(%arg0: tensor<100xf32>, %arg1: tensor<64x64xf32, #sparse>) -> tensor<64x64xf32> attributes { llvm.emit_c_interface } {
+ %0 = sparse_tensor.convert %arg1 : tensor<64x64xf32, #sparse> to tensor<64x64xf32>
+ return %0 : tensor<64x64xf32>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @spiface_sparse_out(
+// CHECK-SAME: %[[X:.*]]: tensor<64x64xf32>,
+// CHECK-SAME: %[[A:.*]]: tensor<?xf32>,
+// CHECK-SAME: %[[B:.*]]: tensor<?xindex>,
+// CHECK-SAME: %[[C:.*]]: tensor<?xindex>) -> (tensor<?xf32>, tensor<?xindex>, tensor<?xindex>) attributes {llvm.emit_c_interface} {
+// CHECK: %[[F:.*]] = call @sparse_out(%[[X]])
+// CHECK: sparse_tensor.disassemble %[[F]]
+// CHECK: return
+// CHECK: }
+#sparse = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
+func.func @sparse_out(%arg0: tensor<64x64xf32>) -> tensor<64x64xf32, #sparse> attributes { llvm.emit_c_interface } {
+ %0 = sparse_tensor.convert %arg0 : tensor<64x64xf32> to tensor<64x64xf32, #sparse>
+ return %0 : tensor<64x64xf32, #sparse>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @spiface_sparse_out2(
+// CHECK-SAME: %[[X:.*]]: tensor<64x64xf32>,
+// CHECK-SAME: %[[A:.*]]: tensor<?xf32>,
+// CHECK-SAME: %[[B:.*]]: tensor<?xindex>,
+// CHECK-SAME: %[[C:.*]]: tensor<?xindex>) -> (tensor<64x64xf32>, tensor<?xf32>, tensor<?xindex>, tensor<?xindex>) attributes {llvm.emit_c_interface} {
+// CHECK: %[[F:.*]]:2 = call @sparse_out2(%[[X]])
+// CHECK: sparse_tensor.disassemble %[[F]]#1
+// CHECK: return %[[F]]#0
+// CHECK: }
+#sparse = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
+func.func @sparse_out2(%arg0: tensor<64x64xf32>) -> (tensor<64x64xf32>, tensor<64x64xf32, #sparse>) attributes { llvm.emit_c_interface } {
+ %0 = sparse_tensor.convert %arg0 : tensor<64x64xf32> to tensor<64x64xf32, #sparse>
+ return %arg0, %0 : tensor<64x64xf32>, tensor<64x64xf32, #sparse>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @spiface_sparse_inout(
+// CHECK-SAME: %[[A:.*0]]: tensor<?xf32>,
+// CHECK-SAME: %[[B:.*1]]: tensor<?xindex>,
+// CHECK-SAME: %[[C:.*2]]: tensor<?xindex>,
+// CHECK-SAME: %[[D:.*3]]: tensor<?xf32>,
+// CHECK-SAME: %[[E:.*4]]: tensor<?xindex>,
+// CHECK-SAME: %[[F:.*5]]: tensor<?xindex>) -> (tensor<?xf32>, tensor<?xindex>, tensor<?xindex>) attributes {llvm.emit_c_interface} {
+// CHECK: %[[I:.*]] = sparse_tensor.assemble %[[A]], %[[B]], %[[C]]
+// CHECK: %[[F:.*]] = call @sparse_inout(%[[I]])
+// CHECK: sparse_tensor.disassemble %[[F]]
+// CHECK: return
+// CHECK: }
+#sparse = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
+func.func @sparse_inout(%arg0: tensor<64x64xf32, #sparse>) -> tensor<64x64xf32, #sparse> attributes { llvm.emit_c_interface } {
+ return %arg0 : tensor<64x64xf32, #sparse>
+}
|
@llvm/pr-subscribers-mlir-sparse Author: Aart Bik (aartbik) ChangesSimilar to the emit_c_interface, this pull request adds a pass that converts public entry methods that use sparse tensors as input parameters and/or output return values into wrapper functions that [dis]assemble the individual tensors that constitute the actual storage used externally into MLIR sparse tensors. This pass can be used to prepare the public entry methods of a program that is compiled by the MLIR sparsifier to interface with an external runtime, e.g., when passing sparse tensors as numpy arrays from and to Python. Note that eventual bufferization decisions (e.g. who [de]allocates the underlying memory) should be resolved in agreement with the external runtime (Python, PyTorch, JAX, etc.) Full diff: https://github.com/llvm/llvm-project/pull/80326.diff 6 Files Affected:
diff --git a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h
index e93e2aefb344f..252908b026968 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h
+++ b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h
@@ -50,6 +50,14 @@ enum class ReinterpretMapScope {
#define GEN_PASS_DECL
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc"
+//===----------------------------------------------------------------------===//
+// The SparseAssembler pass.
+//===----------------------------------------------------------------------===//
+
+void populateSparseAssembler(RewritePatternSet &patterns);
+
+std::unique_ptr<Pass> createSparseAssembler();
+
//===----------------------------------------------------------------------===//
// The SparseReinterpretMap pass.
//===----------------------------------------------------------------------===//
diff --git a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
index f38779ed9ed2b..f0e5e8286c49f 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
+++ b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
@@ -11,6 +11,26 @@
include "mlir/Pass/PassBase.td"
+def SparseAssembler : Pass<"sparse-assembler", "ModuleOp"> {
+ let summary = "Add [dis]assemble operations on external sparse tensors";
+ let description = [{
+ A pass that converts public entry methods that use sparse tensors as
+ input parameters and/or output return values into wrapper functions
+ that [dis]assemble the individual tensors that constitute the actual
+ storage used externally into MLIR sparse tensors. This pass can be used
+ to prepare the public entry methods of a program that is compiled by the
+ MLIR sparsifier to interface with an external runtime, e.g., when passing
+ sparse tensors as numpy arrays from and to Python. Note that eventual
+ bufferization decisions (e.g. who [de]allocates the underlying memory)
+ should be resolved in agreement with the external runtime.
+ }];
+ let constructor = "mlir::createSparseAssembler()";
+ let dependentDialects = [
+ "sparse_tensor::SparseTensorDialect",
+ "tensor::TensorDialect",
+ ];
+}
+
def SparseReinterpretMap : Pass<"sparse-reinterpret-map", "ModuleOp"> {
let summary = "Reinterprets sparse tensor type mappings";
let description = [{
@@ -183,7 +203,6 @@ def LowerForeachToSCF : Pass<"lower-sparse-foreach-to-scf", "func::FuncOp"> {
];
}
-
def SparseTensorConversionPass : Pass<"sparse-tensor-conversion", "ModuleOp"> {
let summary = "Convert sparse tensors and primitives to library calls";
let description = [{
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/CMakeLists.txt b/mlir/lib/Dialect/SparseTensor/Transforms/CMakeLists.txt
index 456e45a040193..3c0f82fc00bb9 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/CMakeLists.txt
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/CMakeLists.txt
@@ -1,6 +1,7 @@
add_mlir_dialect_library(MLIRSparseTensorTransforms
# Rewriting.
BufferizableOpInterfaceImpl.cpp
+ SparseAssembler.cpp
SparseBufferRewriting.cpp
SparseGPUCodegen.cpp
SparseReinterpretMap.cpp
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseAssembler.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseAssembler.cpp
new file mode 100644
index 0000000000000..f7cf1f4091a12
--- /dev/null
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseAssembler.cpp
@@ -0,0 +1,236 @@
+//===- SparseAssembler.cpp - adds wrapper method around sparse types ------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "Utils/CodegenUtils.h"
+
+#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
+#include "mlir/Dialect/SparseTensor/IR/SparseTensorStorageLayout.h"
+#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
+#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "llvm/Support/FormatVariadic.h"
+
+using namespace mlir;
+using namespace sparse_tensor;
+
+//===----------------------------------------------------------------------===//
+// Helper methods.
+//===----------------------------------------------------------------------===//
+
+// Convert type range to new types range, with sparse tensors externalized.
+void convTypes(TypeRange types, SmallVectorImpl<Type> &convTypes,
+ SmallVectorImpl<Type> *extraTypes = nullptr) {
+ for (auto type : types) {
+ if (auto rtp = dyn_cast<RankedTensorType>(type)) {
+ const SparseTensorType stt(rtp);
+ if (stt.hasEncoding()) {
+ auto shape = {ShapedType::kDynamic};
+ // Convert the external representation of the values array.
+ auto vtp = RankedTensorType::get(shape, stt.getElementType());
+ convTypes.push_back(vtp);
+ if (extraTypes)
+ extraTypes->push_back(vtp);
+ // Convert the external representations of the pos/crd arrays.
+ for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
+ const auto lt = stt.getLvlType(lvl);
+ if (isCompressedLT(lt) || isLooseCompressedLT(lt)) {
+ auto ptp = RankedTensorType::get(shape, stt.getPosType());
+ auto ctp = RankedTensorType::get(shape, stt.getCrdType());
+ convTypes.push_back(ptp);
+ convTypes.push_back(ctp);
+ if (extraTypes) {
+ extraTypes->push_back(ptp);
+ extraTypes->push_back(ctp);
+ }
+ } else {
+ assert(isDenseLT(lt)); // TODO: handle other cases
+ }
+ }
+ continue;
+ }
+ }
+ // All other data passes through unmodified.
+ convTypes.push_back(type);
+ }
+}
+
+// Convert input and output values to [dis[assemble ops for sparse tensors.
+void convVals(OpBuilder &builder, Location loc, TypeRange types,
+ ValueRange fromVals, ValueRange extraVals,
+ SmallVectorImpl<Value> &toVals, unsigned extra, bool isIn) {
+ unsigned idx = 0;
+ for (auto type : types) {
+ if (auto rtp = dyn_cast<RankedTensorType>(type)) {
+ const SparseTensorType stt(rtp);
+ if (stt.hasEncoding()) {
+ auto shape = {ShapedType::kDynamic};
+ SmallVector<Value> inputs;
+ SmallVector<Type> retTypes;
+ SmallVector<Type> cntTypes;
+ // Collect the external representation of the values array for
+ // input or the outgoing sparse tensor for output.
+ inputs.push_back(fromVals[idx++]);
+ if (!isIn) {
+ inputs.push_back(extraVals[extra++]);
+ retTypes.push_back(
+ RankedTensorType::get(shape, stt.getElementType()));
+ cntTypes.push_back(builder.getIndexType());
+ }
+ // Collect the external representations of the pos/crd arrays.
+ for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
+ const auto lt = stt.getLvlType(lvl);
+ if (isCompressedLT(lt) || isLooseCompressedLT(lt)) {
+ if (isIn) {
+ inputs.push_back(fromVals[idx++]);
+ inputs.push_back(fromVals[idx++]);
+ } else {
+ Type pTp = stt.getPosType();
+ Type cTp = stt.getCrdType();
+ inputs.push_back(extraVals[extra++]);
+ inputs.push_back(extraVals[extra++]);
+ retTypes.push_back(RankedTensorType::get(shape, pTp));
+ retTypes.push_back(RankedTensorType::get(shape, cTp));
+ cntTypes.push_back(pTp);
+ cntTypes.push_back(cTp);
+ }
+ } else {
+ assert(isDenseLT(lt)); // TODO: handle other cases
+ }
+ }
+ if (isIn) {
+ // Assemble multiple inputs into a single sparse tensor.
+ auto a = builder.create<sparse_tensor::AssembleOp>(loc, rtp, inputs);
+ toVals.push_back(a.getResult());
+ } else {
+ // Disassemble a single sparse input into multiple outputs.
+ // Note that this includes the counters, which are dropped.
+ unsigned len = retTypes.size();
+ retTypes.append(cntTypes);
+ auto d = builder.create<sparse_tensor::DisassembleOp>(loc, retTypes,
+ inputs);
+ for (unsigned i = 0; i < len; i++)
+ toVals.push_back(d.getResult(i));
+ }
+ continue;
+ }
+ }
+ // Passes through unmodified.
+ toVals.push_back(fromVals[idx++]);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Rewriting rules.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+// A rewriting rules that converts public entry methods that use sparse tensors
+// as input parameters and/or output return values into wrapper functions
+// that [dis]assemble the individual tensors that constitute the actual
+// storage used externally into MLIR sparse tensors.
+//
+// In particular, each sparse tensor input
+//
+// void foo(..., t, ...) { }
+//
+// adds the following strucuture in a wrapper
+//
+// void sp_face_foo(..., t1..tn, ...) {
+// t = assemble t1..tn
+// foo(..., t, ...)
+// }
+//
+// and likewise, each output tensor
+//
+// ... T ... bar(...) { return ..., t, ...; }
+//
+// adds the following structure in a wrapper
+//
+// ... T1..TN ... sp_face_bar(..., t1'..tn') {
+// ..., t, ... = bar(...)
+// t1..tn = disassemble t, t1'..tn'
+// return ..., t1..tn, ...
+// }
+//
+// TODO: refine output sparse tensors to work well with external framework
+//
+struct SparseFuncAssembler : public OpRewritePattern<func::FuncOp> {
+ using OpRewritePattern::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(func::FuncOp funcOp,
+ PatternRewriter &rewriter) const override {
+ // Only a rewrite an entry with the c-interface requested.
+ if (!funcOp->getAttrOfType<UnitAttr>(
+ LLVM::LLVMDialect::getEmitCWrapperAttrName()))
+ return failure();
+
+ // Translate sparse tensor types to external types.
+ SmallVector<Type> inputTypes;
+ SmallVector<Type> outputTypes;
+ SmallVector<Type> extraTypes;
+ convTypes(funcOp.getArgumentTypes(), inputTypes);
+ convTypes(funcOp.getResultTypes(), outputTypes, &extraTypes);
+
+ // Only sparse inputs or outputs need a wrapper function.
+ if (inputTypes.size() == funcOp.getArgumentTypes().size() &&
+ outputTypes.size() == funcOp.getResultTypes().size())
+ return failure();
+
+ // Start the new wrapper function. Together with the c-interface mangling,
+ // a sparse external entry point eventually will have a name like:
+ // _mlir_ciface_spiface_XXX(...)
+ Location loc = funcOp.getLoc();
+ ModuleOp modOp = funcOp->getParentOfType<ModuleOp>();
+ MLIRContext *context = modOp.getContext();
+ OpBuilder moduleBuilder(modOp.getBodyRegion());
+ std::string wrapper = llvm::formatv("spiface_{0}", funcOp.getName()).str();
+ unsigned extra = inputTypes.size();
+ inputTypes.append(extraTypes);
+ auto func = moduleBuilder.create<func::FuncOp>(
+ loc, wrapper, FunctionType::get(context, inputTypes, outputTypes));
+ func.setPublic();
+ func->setAttr(LLVM::LLVMDialect::getEmitCWrapperAttrName(),
+ UnitAttr::get(context));
+
+ // Construct new wrapper function body.
+ auto org = SymbolRefAttr::get(context, funcOp.getName());
+ OpBuilder::InsertionGuard insertionGuard(rewriter);
+ Block *body = func.addEntryBlock();
+ rewriter.setInsertionPointToStart(body);
+
+ // Convert inputs.
+ SmallVector<Value> inputs;
+ convVals(rewriter, loc, funcOp.getArgumentTypes(), body->getArguments(),
+ ValueRange(), inputs, 0, /*isIn=*/true);
+
+ // Call original function.
+ auto call = rewriter.create<func::CallOp>(loc, funcOp.getResultTypes(), org,
+ inputs);
+
+ // Convert outputs and return.
+ SmallVector<Value> outputs;
+ convVals(rewriter, loc, funcOp.getResultTypes(), call.getResults(),
+ body->getArguments(), outputs, extra, /*isIn=*/false);
+ rewriter.create<func::ReturnOp>(loc, outputs);
+
+ // Strip the c-interface attribute from the original function.
+ funcOp->removeAttr(LLVM::LLVMDialect::getEmitCWrapperAttrName());
+ return success();
+ }
+};
+
+} // namespace
+
+//===----------------------------------------------------------------------===//
+// Public method for populating conversion rules.
+//===----------------------------------------------------------------------===//
+
+void mlir::populateSparseAssembler(RewritePatternSet &patterns) {
+ patterns.add<SparseFuncAssembler>(patterns.getContext());
+}
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
index 375e10f9068e4..b7e752dc419e4 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
@@ -22,6 +22,7 @@
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir {
+#define GEN_PASS_DEF_SPARSEASSEMBLER
#define GEN_PASS_DEF_SPARSEREINTERPRETMAP
#define GEN_PASS_DEF_PRESPARSIFICATIONREWRITE
#define GEN_PASS_DEF_SPARSIFICATIONPASS
@@ -46,6 +47,18 @@ namespace {
// Passes implementation.
//===----------------------------------------------------------------------===//
+struct SparseAssembler : public impl::SparseAssemblerBase<SparseAssembler> {
+ SparseAssembler() = default;
+ SparseAssembler(const SparseAssembler &pass) = default;
+
+ void runOnOperation() override {
+ auto *ctx = &getContext();
+ RewritePatternSet patterns(ctx);
+ populateSparseAssembler(patterns);
+ (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
+ }
+};
+
struct SparseReinterpretMap
: public impl::SparseReinterpretMapBase<SparseReinterpretMap> {
SparseReinterpretMap() = default;
diff --git a/mlir/test/Dialect/SparseTensor/external.mlir b/mlir/test/Dialect/SparseTensor/external.mlir
new file mode 100644
index 0000000000000..57df8aca3a6a5
--- /dev/null
+++ b/mlir/test/Dialect/SparseTensor/external.mlir
@@ -0,0 +1,97 @@
+// RUN: mlir-opt %s --sparse-assembler -split-input-file | FileCheck %s
+
+// -----
+
+// CHECK-LABEL: func.func @nop(
+// CHECK-SAME: %[[A:.*]]: tensor<100xf32>) -> tensor<100xf32> attributes {llvm.emit_c_interface} {
+// CHECK: return %[[A]] : tensor<100xf32>
+// CHECK: }
+func.func @nop(%arg0: tensor<100xf32>) -> tensor<100xf32> attributes { llvm.emit_c_interface } {
+ return %arg0 : tensor<100xf32>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @spiface_sparse_in(
+// CHECK-SAME: %[[A:.*]]: tensor<?xf32>,
+// CHECK-SAME: %[[B:.*]]: tensor<?xindex>,
+// CHECK-SAME: %[[C:.*]]: tensor<?xindex>) -> tensor<64x64xf32> attributes {llvm.emit_c_interface} {
+// CHECK: %[[I:.*]] = sparse_tensor.assemble %[[A]], %[[B]], %[[C]]
+// CHECK: %[[F:.*]] = call @sparse_in(%[[I]])
+// CHECK: return %[[F]] : tensor<64x64xf32>
+// CHECK: }
+#sparse = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
+func.func @sparse_in(%arg0: tensor<64x64xf32, #sparse>) -> tensor<64x64xf32> attributes { llvm.emit_c_interface } {
+ %0 = sparse_tensor.convert %arg0 : tensor<64x64xf32, #sparse> to tensor<64x64xf32>
+ return %0 : tensor<64x64xf32>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @spiface_sparse_in2(
+// CHECK-SAME: %[[X:.*]]: tensor<100xf32>,
+// CHECK-SAME: %[[A:.*]]: tensor<?xf32>,
+// CHECK-SAME: %[[B:.*]]: tensor<?xindex>,
+// CHECK-SAME: %[[C:.*]]: tensor<?xindex>) -> tensor<64x64xf32> attributes {llvm.emit_c_interface} {
+// CHECK: %[[I:.*]] = sparse_tensor.assemble %[[A]], %[[B]], %[[C]]
+// CHECK: %[[F:.*]] = call @sparse_in2(%[[X]], %[[I]])
+// CHECK: return %[[F]] : tensor<64x64xf32>
+// CHECK: }
+#sparse = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
+func.func @sparse_in2(%arg0: tensor<100xf32>, %arg1: tensor<64x64xf32, #sparse>) -> tensor<64x64xf32> attributes { llvm.emit_c_interface } {
+ %0 = sparse_tensor.convert %arg1 : tensor<64x64xf32, #sparse> to tensor<64x64xf32>
+ return %0 : tensor<64x64xf32>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @spiface_sparse_out(
+// CHECK-SAME: %[[X:.*]]: tensor<64x64xf32>,
+// CHECK-SAME: %[[A:.*]]: tensor<?xf32>,
+// CHECK-SAME: %[[B:.*]]: tensor<?xindex>,
+// CHECK-SAME: %[[C:.*]]: tensor<?xindex>) -> (tensor<?xf32>, tensor<?xindex>, tensor<?xindex>) attributes {llvm.emit_c_interface} {
+// CHECK: %[[F:.*]] = call @sparse_out(%[[X]])
+// CHECK: sparse_tensor.disassemble %[[F]]
+// CHECK: return
+// CHECK: }
+#sparse = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
+func.func @sparse_out(%arg0: tensor<64x64xf32>) -> tensor<64x64xf32, #sparse> attributes { llvm.emit_c_interface } {
+ %0 = sparse_tensor.convert %arg0 : tensor<64x64xf32> to tensor<64x64xf32, #sparse>
+ return %0 : tensor<64x64xf32, #sparse>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @spiface_sparse_out2(
+// CHECK-SAME: %[[X:.*]]: tensor<64x64xf32>,
+// CHECK-SAME: %[[A:.*]]: tensor<?xf32>,
+// CHECK-SAME: %[[B:.*]]: tensor<?xindex>,
+// CHECK-SAME: %[[C:.*]]: tensor<?xindex>) -> (tensor<64x64xf32>, tensor<?xf32>, tensor<?xindex>, tensor<?xindex>) attributes {llvm.emit_c_interface} {
+// CHECK: %[[F:.*]]:2 = call @sparse_out2(%[[X]])
+// CHECK: sparse_tensor.disassemble %[[F]]#1
+// CHECK: return %[[F]]#0
+// CHECK: }
+#sparse = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
+func.func @sparse_out2(%arg0: tensor<64x64xf32>) -> (tensor<64x64xf32>, tensor<64x64xf32, #sparse>) attributes { llvm.emit_c_interface } {
+ %0 = sparse_tensor.convert %arg0 : tensor<64x64xf32> to tensor<64x64xf32, #sparse>
+ return %arg0, %0 : tensor<64x64xf32>, tensor<64x64xf32, #sparse>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @spiface_sparse_inout(
+// CHECK-SAME: %[[A:.*0]]: tensor<?xf32>,
+// CHECK-SAME: %[[B:.*1]]: tensor<?xindex>,
+// CHECK-SAME: %[[C:.*2]]: tensor<?xindex>,
+// CHECK-SAME: %[[D:.*3]]: tensor<?xf32>,
+// CHECK-SAME: %[[E:.*4]]: tensor<?xindex>,
+// CHECK-SAME: %[[F:.*5]]: tensor<?xindex>) -> (tensor<?xf32>, tensor<?xindex>, tensor<?xindex>) attributes {llvm.emit_c_interface} {
+// CHECK: %[[I:.*]] = sparse_tensor.assemble %[[A]], %[[B]], %[[C]]
+// CHECK: %[[F:.*]] = call @sparse_inout(%[[I]])
+// CHECK: sparse_tensor.disassemble %[[F]]
+// CHECK: return
+// CHECK: }
+#sparse = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
+func.func @sparse_inout(%arg0: tensor<64x64xf32, #sparse>) -> tensor<64x64xf32, #sparse> attributes { llvm.emit_c_interface } {
+ return %arg0 : tensor<64x64xf32, #sparse>
+}
|
✅ With the latest revision this PR passed the C/C++ code formatter. |
* llvm/main: (500 commits) [docs] Add beginner-focused office hours (llvm#80308) [mlir][sparse] external entry method wrapper for sparse tensors (llvm#80326) [StackSlotColoring] Ignore non-spill objects in RemoveDeadStores. (llvm#80242) [libc][stdbit] fix return types (llvm#80337) Revert "[RISCV] Refine cost on Min/Max reduction" (llvm#80340) [TTI]Add support for strided loads/stores. [analyzer][HTMLRewriter] Cache partial rewrite results. (llvm#80220) [flang][openacc][openmp] Use #0 from hlfir.declare value when generating bound ops (llvm#80317) [AArch64][PAC] Expand blend(reg, imm) operation in aarch64-pauth pass (llvm#74729) [SHT_LLVM_BB_ADDR_MAP][llvm-readobj] Implements llvm-readobj handling for PGOAnalysisMap. (llvm#79520) [libc] add bazel support for most of unistd (llvm#80078) [clang-tidy] Remove enforcement of rule C.48 from cppcoreguidelines-prefer-member-init (llvm#80330) [OpenMP] Fix typo (NFC) (llvm#80332) [BOLT] Enable re-writing of Linux kernel binary (llvm#80228) [BOLT] Adjust section sizes based on file offsets (llvm#80226) [libc] fix stdbit include test when not all entrypoints are available (llvm#80323) [RISCV][GISel] RegBank select and instruction select for vector G_ADD, G_SUB (llvm#74114) [RISCV] Add srmcfg CSR from Ssqosid extension. (llvm#79914) [mlir][sparse] add sparsification options to pretty print and debug s… (llvm#80205) [RISCV][MC] MC layer support for the experimental zalasr extension (llvm#79911) ...
…#80326) Similar to the emit_c_interface, this pull request adds a pass that converts public entry methods that use sparse tensors as input parameters and/or output return values into wrapper functions that [dis]assemble the individual tensors that constitute the actual storage used externally into MLIR sparse tensors. This pass can be used to prepare the public entry methods of a program that is compiled by the MLIR sparsifier to interface with an external runtime, e.g., when passing sparse tensors as numpy arrays from and to Python. Note that eventual bufferization decisions (e.g. who [de]allocates the underlying memory) should be resolved in agreement with the external runtime (Python, PyTorch, JAX, etc.)
Similar to the emit_c_interface, this pull request adds a pass that converts public entry methods that use sparse tensors as input parameters and/or output return values into wrapper functions that [dis]assemble the individual tensors that constitute the actual storage used externally into MLIR sparse tensors. This pass can be used to prepare the public entry methods of a program that is compiled by the MLIR sparsifier to interface with an external runtime, e.g., when passing sparse tensors as numpy arrays from and to Python. Note that eventual bufferization decisions (e.g. who [de]allocates the underlying memory) should be resolved in agreement with the external runtime (Python, PyTorch, JAX, etc.)