Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[mlir][SVE] Add more e2e test for vector.contract #70367

Merged
merged 3 commits into from
Oct 27, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -13,12 +13,38 @@
// REDEFINE: %{entry} = matmul_f32
// RUN: %{run} | FileCheck %s --check-prefix=F32

// REDEFINE: %{entry} = dot_product_i32
// RUN: %{run} | FileCheck %s --check-prefix=DP

// REDEFINE: %{entry} = matvec_i32
// RUN: %{run} | FileCheck %s --check-prefix=MV

// NOTE: These tests are meant to complement the integration tests from:
// * ../test-contraction.mlir
// (tests with fixed width vectors). Rather than duplicating those tests, this
// file focuses on excercissing scalable vectors in a few most common cases.

// TODO: Masks + matvec + dot product
// TODO: Masks

#dotp_accesses = [
affine_map<(i) -> (i)>,
affine_map<(i) -> (i)>,
affine_map<(i) -> ()>
]
#dotp_trait = {
indexing_maps = #dotp_accesses,
iterator_types = ["reduction"]
}

#matvec_accesses = [
affine_map<(i, j) -> (i, j)>,
affine_map<(i, j) -> (j)>,
affine_map<(i, j) -> (i)>
]
#matvec_trait = {
indexing_maps = #matvec_accesses,
iterator_types = ["parallel", "reduction"]
}

#matmat_accesses = [
affine_map<(i, j, k) -> (i, k)>,
Expand All @@ -30,6 +56,76 @@
iterator_types = ["parallel", "parallel", "reduction"]
}

// Contraction: dot-product a x b.
func.func @dot_product_i32() {
%acc = arith.constant 0: i32

%vector_a = arith.constant dense<123> : vector<[4]xi32>
%vector_b = arith.constant dense<314> : vector<[4]xi32>
%vector_c = arith.constant dense<0> : vector<[4]xi32>

// DOT PRODUCT 1
%dp1 = vector.contract #dotp_trait %vector_a, %vector_b, %acc
: vector<[4]xi32>, vector<[4]xi32> into i32
// Dot product should be:
// * val = (123 * 314) * 4 * vscale,
// so ...
%vscale = vector.vscale
%vscale_i32 = arith.index_cast %vscale : index to i32
%dp1_div = arith.divui %dp1, %vscale_i32 : i32
// ... val / vscale = 123 * 314 * 4 = 154488
// DP: 154488
vector.print %dp1_div : i32

// DOT PRODUCT 2
// The result of this dot-product should be 0.
%dp2 = vector.contract #dotp_trait %vector_a, %vector_c, %acc
: vector<[4]xi32>, vector<[4]xi32> into i32
// DP: 0
vector.print %dp2 : i32

// DP: SVE: END OF TEST OUTPUT
vector.print str "SVE: END OF TEST OUTPUT"

return
}

// Contraction: matrix-vector A x c
func.func @matvec_i32() {
%acc = arith.constant dense<0>: vector<3xi32>

%vector_a = arith.constant dense<123> : vector<3x[4]xi32>
%vector_b = arith.constant dense<314> : vector<[4]xi32>
%vector_c = arith.constant dense<0> : vector<[4]xi32>

// MATVEC 1
%mv1 = vector.contract #matvec_trait %vector_a, %vector_b, %acc
: vector<3x[4]xi32>, vector<[4]xi32> into vector<3xi32>
// Every element in the output vector is a result of a dot product, for
// which:
// val = (123 * 314) * 4 * vscale
// so ...
%vscale = vector.vscale
%vscale_v = vector.splat %vscale : vector<3xindex>
%vscale_i32 = arith.index_cast %vscale_v : vector<3xindex> to vector<3xi32>
%mv1_div = arith.divui %mv1, %vscale_i32 : vector<3xi32>
// ... val / vscale = 123 * 314 * 4 = 154488
// MV: 154488, 154488, 154488
vector.print %mv1_div : vector<3xi32>

// MATVEC 2
// The result of this matvec should be a vector of 0s.
%mv2 = vector.contract #matvec_trait %vector_a, %vector_c, %acc
: vector<3x[4]xi32>, vector<[4]xi32> into vector<3xi32>
// MV: 0, 0, 0
vector.print %mv2 : vector<3xi32>

// MV: SVE: END OF TEST OUTPUT
vector.print str "SVE: END OF TEST OUTPUT"

return
}

func.func @matmul_i32() {
// Setup vector A:
%vector_a = arith.constant dense<123> : vector<3x5xi32>
Expand Down