Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sd3.5 integration (naive) #2183

Merged
merged 1 commit into from
Oct 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
137 changes: 137 additions & 0 deletions backend/diffusion_engine/sd35.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
import torch

from huggingface_guess import model_list
# from huggingface_guess.latent import SD3
from backend.diffusion_engine.base import ForgeDiffusionEngine, ForgeObjects
from backend.patcher.clip import CLIP
from backend.patcher.vae import VAE
from backend.patcher.unet import UnetPatcher
from backend.text_processing.classic_engine import ClassicTextProcessingEngine
from backend.text_processing.t5_engine import T5TextProcessingEngine
from backend.args import dynamic_args
from backend import memory_management
from backend.modules.k_prediction import PredictionDiscreteFlow

class StableDiffusion3(ForgeDiffusionEngine):
matched_guesses = [model_list.SD35]

def __init__(self, estimated_config, huggingface_components):
super().__init__(estimated_config, huggingface_components)

clip = CLIP(
model_dict={
'clip_l': huggingface_components['text_encoder'],
'clip_g': huggingface_components['text_encoder_2'],
't5xxl': huggingface_components['text_encoder_3']
},
tokenizer_dict={
'clip_l': huggingface_components['tokenizer'],
'clip_g': huggingface_components['tokenizer_2'],
't5xxl': huggingface_components['tokenizer_3']
}
)

k_predictor = PredictionDiscreteFlow( shift=3.0)

vae = VAE(model=huggingface_components['vae'])

unet = UnetPatcher.from_model(
model=huggingface_components['transformer'],
diffusers_scheduler= None,
k_predictor=k_predictor,
config=estimated_config
)

self.text_processing_engine_l = ClassicTextProcessingEngine(
text_encoder=clip.cond_stage_model.clip_l,
tokenizer=clip.tokenizer.clip_l,
embedding_dir=dynamic_args['embedding_dir'],
embedding_key='clip_l',
embedding_expected_shape=768,
emphasis_name=dynamic_args['emphasis_name'],
text_projection=True,
minimal_clip_skip=1,
clip_skip=1,
return_pooled=True,
final_layer_norm=False,
)

self.text_processing_engine_g = ClassicTextProcessingEngine(
text_encoder=clip.cond_stage_model.clip_g,
tokenizer=clip.tokenizer.clip_g,
embedding_dir=dynamic_args['embedding_dir'],
embedding_key='clip_g',
embedding_expected_shape=1280,
emphasis_name=dynamic_args['emphasis_name'],
text_projection=True,
minimal_clip_skip=1,
clip_skip=1,
return_pooled=True,
final_layer_norm=False,
)

self.text_processing_engine_t5 = T5TextProcessingEngine(
text_encoder=clip.cond_stage_model.t5xxl,
tokenizer=clip.tokenizer.t5xxl,
emphasis_name=dynamic_args['emphasis_name'],
)


self.forge_objects = ForgeObjects(unet=unet, clip=clip, vae=vae, clipvision=None)
self.forge_objects_original = self.forge_objects.shallow_copy()
self.forge_objects_after_applying_lora = self.forge_objects.shallow_copy()

# WebUI Legacy
self.is_sd3 = True

def set_clip_skip(self, clip_skip):
self.text_processing_engine_l.clip_skip = clip_skip
self.text_processing_engine_g.clip_skip = clip_skip

@torch.inference_mode()
def get_learned_conditioning(self, prompt: list[str]):
memory_management.load_model_gpu(self.forge_objects.clip.patcher)

cond_g, g_pooled = self.text_processing_engine_g(prompt)
cond_l, l_pooled = self.text_processing_engine_l(prompt)
# if enabled?
cond_t5 = self.text_processing_engine_t5(prompt)

is_negative_prompt = getattr(prompt, 'is_negative_prompt', False)

force_zero_negative_prompt = is_negative_prompt and all(x == '' for x in prompt)

if force_zero_negative_prompt:
l_pooled = torch.zeros_like(l_pooled)
g_pooled = torch.zeros_like(g_pooled)
cond_l = torch.zeros_like(cond_l)
cond_g = torch.zeros_like(cond_g)
cond_t5 = torch.zeros_like(cond_t5)

cond_lg = torch.cat([cond_l, cond_g], dim=-1)
cond_lg = torch.nn.functional.pad(cond_lg, (0, 4096 - cond_lg.shape[-1]))

cond = dict(
crossattn=torch.cat([cond_lg, cond_t5], dim=-2),
vector=torch.cat([l_pooled, g_pooled], dim=-1),
)

return cond

@torch.inference_mode()
def get_prompt_lengths_on_ui(self, prompt):
token_count = len(self.text_processing_engine_t5.tokenize([prompt])[0])
return token_count, max(255, token_count)

@torch.inference_mode()
def encode_first_stage(self, x):
sample = self.forge_objects.vae.encode(x.movedim(1, -1) * 0.5 + 0.5)
sample = self.forge_objects.vae.first_stage_model.process_in(sample)
return sample.to(x)

@torch.inference_mode()
def decode_first_stage(self, x):
sample = self.forge_objects.vae.first_stage_model.process_out(x)
sample = self.forge_objects.vae.decode(sample).movedim(-1, 1) * 2.0 - 1.0

return sample.to(x)
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
{
"_class_name": "StableDiffusion3Pipeline",
"_diffusers_version": "0.30.3.dev0",
"scheduler": [
"diffusers",
"FlowMatchEulerDiscreteScheduler"
],
"text_encoder": [
"transformers",
"CLIPTextModelWithProjection"
],
"text_encoder_2": [
"transformers",
"CLIPTextModelWithProjection"
],
"text_encoder_3": [
"transformers",
"T5EncoderModel"
],
"tokenizer": [
"transformers",
"CLIPTokenizer"
],
"tokenizer_2": [
"transformers",
"CLIPTokenizer"
],
"tokenizer_3": [
"transformers",
"T5TokenizerFast"
],
"transformer": [
"diffusers",
"SD3Transformer2DModel"
],
"vae": [
"diffusers",
"AutoencoderKL"
]
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
{
"_class_name": "FlowMatchEulerDiscreteScheduler",
"_diffusers_version": "0.29.0.dev0",
"num_train_timesteps": 1000,
"shift": 3.0
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
{
"architectures": [
"CLIPTextModelWithProjection"
],
"attention_dropout": 0.0,
"bos_token_id": 0,
"dropout": 0.0,
"eos_token_id": 2,
"hidden_act": "quick_gelu",
"hidden_size": 768,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 77,
"model_type": "clip_text_model",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 1,
"projection_dim": 768,
"torch_dtype": "float16",
"transformers_version": "4.41.2",
"vocab_size": 49408
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
{
"architectures": [
"CLIPTextModelWithProjection"
],
"attention_dropout": 0.0,
"bos_token_id": 0,
"dropout": 0.0,
"eos_token_id": 2,
"hidden_act": "gelu",
"hidden_size": 1280,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 5120,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 77,
"model_type": "clip_text_model",
"num_attention_heads": 20,
"num_hidden_layers": 32,
"pad_token_id": 1,
"projection_dim": 1280,
"torch_dtype": "float16",
"transformers_version": "4.41.2",
"vocab_size": 49408
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
{
"architectures": [
"T5EncoderModel"
],
"classifier_dropout": 0.0,
"d_ff": 10240,
"d_kv": 64,
"d_model": 4096,
"decoder_start_token_id": 0,
"dense_act_fn": "gelu_new",
"dropout_rate": 0.1,
"eos_token_id": 1,
"feed_forward_proj": "gated-gelu",
"initializer_factor": 1.0,
"is_encoder_decoder": true,
"is_gated_act": true,
"layer_norm_epsilon": 1e-06,
"model_type": "t5",
"num_decoder_layers": 24,
"num_heads": 64,
"num_layers": 24,
"output_past": true,
"pad_token_id": 0,
"relative_attention_max_distance": 128,
"relative_attention_num_buckets": 32,
"tie_word_embeddings": false,
"torch_dtype": "float16",
"transformers_version": "4.41.2",
"use_cache": true,
"vocab_size": 32128
}
Loading