-
Notifications
You must be signed in to change notification settings - Fork 83
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
關於資料集分數重現差異 #114
Comments
我也是,在使用源代码基础上复习Genia数据集得到的F1 为 80.87,与论文中有差异,请问是不是还用了什么trick? |
我有注意到作者說可以調參,也試著調了幾個,如dilation [1,2,3] 改成 [1] 或是 不加 Biaffine 分數都沒有變好,不確定有沒有其他調參的做法,也想問一下 先生是否有找到其他作法 可以增高分數 |
我发现源代码使用的应该是biobert,但是使用这个预训练模型效果不如使用pubmedbert |
作者還有一篇論文叫 TOE https://arxiv.org/pdf/2211.00684.pdf 不知道對先生有沒有幫助 |
谢谢你 |
你换成mutibiaffine试试
获取Outlook for Android<https://aka.ms/AAb9ysg>
…________________________________
From: vicaasas ***@***.***>
Sent: Thursday, January 4, 2024 4:13:33 PM
To: ljynlp/W2NER ***@***.***>
Cc: LI ZHE ***@***.***>; Comment ***@***.***>
Subject: Re: [ljynlp/W2NER] P於Y料集分�抵噩F差� (Issue #114)
我有注意到作者f可以{�苍�著{了��,如dilation [1,2,3] 改成 [1] 或是 不加 Biaffine 分�刀�]有�好,不_定有�]有其他{�⒌淖龇ǎ蚕��一下 先生是否有找到其他作法 可以增高分�
―
Reply to this email directly, view it on GitHub<#114 (comment)>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/A26EABSLOWKNYPPJJALVWP3YMZQC3AVCNFSM6AAAAABASVHUP6VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTQNZWGY4DCNBYHA>.
You are receiving this because you commented.Message ID: ***@***.***>
|
mutibiaffine 是? |
An Embarrassingly Easy but Strong Baseline for Nested Named Entity Recognition |
感謝,先生是加了這個分數就重現了嗎 |
不是,这只是我的想法
获取Outlook for Android<https://aka.ms/AAb9ysg>
…________________________________
From: vicaasas ***@***.***>
Sent: Monday, January 8, 2024 3:47:58 PM
To: ljynlp/W2NER ***@***.***>
Cc: LI ZHE ***@***.***>; Comment ***@***.***>
Subject: Re: [ljynlp/W2NER] P於Y料集分�抵噩F差� (Issue #114)
感x,先生是加了@��分�稻椭噩F了�
―
Reply to this email directly, view it on GitHub<#114 (comment)>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/A26EABTOUWNEY7DPXWKB243YNOQC5AVCNFSM6AAAAABASVHUP6VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTQOBQGUYTKMBUGA>.
You are receiving this because you commented.Message ID: ***@***.***>
|
因为我也没能复现出分数
获取Outlook for Android<https://aka.ms/AAb9ysg>
…________________________________
From: vicaasas ***@***.***>
Sent: Monday, January 8, 2024 3:47:58 PM
To: ljynlp/W2NER ***@***.***>
Cc: LI ZHE ***@***.***>; Comment ***@***.***>
Subject: Re: [ljynlp/W2NER] P於Y料集分�抵噩F差� (Issue #114)
感x,先生是加了@��分�稻椭噩F了�
―
Reply to this email directly, view it on GitHub<#114 (comment)>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/A26EABTOUWNEY7DPXWKB243YNOQC5AVCNFSM6AAAAABASVHUP6VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTQOBQGUYTKMBUGA>.
You are receiving this because you commented.Message ID: ***@***.***>
|
先生給的那篇論文,我大致看了一下....,先生會覺得需要重現分數才能投上期刊嗎 |
我觉得肯定是,所以我现在很头疼,不然体现不出我们改的东西有增益
获取Outlook for Android<https://aka.ms/AAb9ysg>
…________________________________
From: vicaasas ***@***.***>
Sent: Monday, January 8, 2024 4:07:07 PM
To: ljynlp/W2NER ***@***.***>
Cc: LI ZHE ***@***.***>; Comment ***@***.***>
Subject: Re: [ljynlp/W2NER] P於Y料集分�抵噩F差� (Issue #114)
先生o的那篇�文,我大致看了一下....,先生�X得需要重F分�挡拍芡渡掀诳�
―
Reply to this email directly, view it on GitHub<#114 (comment)>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/A26EABWTPHP3DLNEIADRJTTYNOSKXAVCNFSM6AAAAABASVHUP6VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTQOBQGUZTINZTGI>.
You are receiving this because you commented.Message ID: ***@***.***>
|
您好,请问您用的pubmedbert是Hugging Face中的哪一个?NeuML的那个吗?还有就是您说的效果提升大概有多大呢?万分感谢! |
我不太记得了,现在好像PubMedbert名字改了,你仔细看一下描述,里面有写的。在我的设备上大概比biobert有1%提升,你也可以试试别的比如scibert之类的 |
您好,謝謝你們對這領域的供獻,
想請問論文所提到的資料集 share13 share14 以及 cadec :
我們在重現各資料集的 report 分數時,在無數的嘗試後都沒辦法重現分數,多數的分數都與 report f1 分數差2%左右
我們也注意到,如果依照論文提及的 dataset github , 實作後得到的資料句子長度差異有點大,
有可能一個句子兩的字,也有的句子破百字,想請問你們在研究時是否有對資料集做更動
The text was updated successfully, but these errors were encountered: