forked from official-stockfish/Stockfish
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Use block sparse input for the first layer.
Use block sparse input for the first fully connected layer on architectures with at least SSSE3. Depending on the CPU architecture, this yields a speedup of up to 10%, e.g. ``` Result of 100 runs of 'bench 16 1 13 default depth NNUE' base (...ockfish-base) = 959345 +/- 7477 test (...ckfish-patch) = 1054340 +/- 9640 diff = +94995 +/- 3999 speedup = +0.0990 P(speedup > 0) = 1.0000 CPU: 8 x AMD Ryzen 7 5700U with Radeon Graphics Hyperthreading: on ``` Passed STC: https://tests.stockfishchess.org/tests/view/6485aa0965ffe077ca12409c LLR: 2.93 (-2.94,2.94) <0.00,2.00> Total: 8864 W: 2479 L: 2223 D: 4162 Ptnml(0-2): 13, 829, 2504, 1061, 25 This commit includes a net with reordered weights, to increase the likelihood of block sparse inputs, but otherwise equivalent to the previous master net (nn-ea57bea57e32.nnue). Activation data collected with https://github.com/AndrovT/Stockfish/tree/log-activations, running bench 16 1 13 varied_1000.epd depth NNUE on this data. Net parameters permuted with https://gist.github.com/AndrovT/9e3fbaebb7082734dc84d27e02094cb3. closes official-stockfish#4612 No functional change
- Loading branch information
Showing
3 changed files
with
289 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,286 @@ | ||
/* | ||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1 | ||
Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file) | ||
Stockfish is free software: you can redistribute it and/or modify | ||
it under the terms of the GNU General Public License as published by | ||
the Free Software Foundation, either version 3 of the License, or | ||
(at your option) any later version. | ||
Stockfish is distributed in the hope that it will be useful, | ||
but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
GNU General Public License for more details. | ||
You should have received a copy of the GNU General Public License | ||
along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
*/ | ||
|
||
// Definition of layer AffineTransformSparseInput of NNUE evaluation function | ||
|
||
#ifndef NNUE_LAYERS_AFFINE_TRANSFORM_SPARSE_INPUT_H_INCLUDED | ||
#define NNUE_LAYERS_AFFINE_TRANSFORM_SPARSE_INPUT_H_INCLUDED | ||
|
||
#include <iostream> | ||
#include <algorithm> | ||
#include <array> | ||
#include <type_traits> | ||
#include "../nnue_common.h" | ||
#include "affine_transform.h" | ||
#include "simd.h" | ||
|
||
/* | ||
This file contains the definition for a fully connected layer (aka affine transform) with block sparse input. | ||
*/ | ||
|
||
namespace Stockfish::Eval::NNUE::Layers { | ||
#if defined(__GNUC__) // GCC, Clang, ICC | ||
|
||
static inline IndexType lsb_(std::uint32_t b) { | ||
assert(b); | ||
return IndexType(__builtin_ctzl(b)); | ||
} | ||
|
||
#elif defined(_MSC_VER) // MSVC | ||
|
||
static inline IndexType lsb_(std::uint32_t b) { | ||
assert(b); | ||
unsigned long idx; | ||
_BitScanForward(&idx, b); | ||
return (IndexType) idx; | ||
} | ||
|
||
#else // Compiler is neither GCC nor MSVC compatible | ||
|
||
#error "Compiler not supported." | ||
|
||
#endif | ||
|
||
|
||
#if defined(USE_SSSE3) | ||
alignas(CacheLineSize) static inline const std::array<std::array<std::uint16_t, 8>, 256> lookup_indices = [](){ | ||
std::array<std::array<std::uint16_t, 8>, 256> v{}; | ||
for (int i = 0; i < 256; ++i) | ||
{ | ||
int j = i; | ||
int k = 0; | ||
while(j) | ||
{ | ||
const IndexType lsbIndex = lsb_(std::uint32_t(j)); | ||
j &= j - 1; | ||
v[i][k] = lsbIndex; | ||
++k; | ||
} | ||
} | ||
return v; | ||
}(); | ||
alignas(CacheLineSize) static inline const std::array<unsigned, 256> lookup_count = [](){ | ||
std::array<unsigned, 256> v; | ||
for (int i = 0; i < 256; ++i) | ||
{ | ||
int j = i; | ||
int k = 0; | ||
while(j) | ||
{ | ||
j &= j - 1; | ||
++k; | ||
} | ||
v[i] = k; | ||
} | ||
return v; | ||
}(); | ||
|
||
// Find indices of nonzero numbers in an int32_t array | ||
template<const IndexType InputDimensions> | ||
void find_nnz(const std::int32_t* input, std::uint16_t* out, IndexType& count_out) { | ||
#if defined (USE_AVX512) | ||
using vec_t = __m512i; | ||
#define vec_nnz(a) _mm512_cmpgt_epi32_mask(a, _mm512_setzero_si512()) | ||
#elif defined (USE_AVX2) | ||
using vec_t = __m256i; | ||
#define vec_nnz(a) _mm256_movemask_ps((__m256)_mm256_cmpgt_epi32(a, _mm256_setzero_si256())) | ||
#elif defined (USE_SSSE3) | ||
using vec_t = __m128i; | ||
#define vec_nnz(a) _mm_movemask_ps((__m128)_mm_cmpgt_epi32(a, _mm_setzero_si128())) | ||
#endif | ||
constexpr IndexType InputSimdWidth = sizeof(vec_t) / sizeof(std::int32_t); | ||
// Inputs are processed InputSimdWidth at a time and outputs are processed 8 at a time so we process in chunks of max(InputSimdWidth, 8) | ||
constexpr IndexType ChunkSize = std::max<IndexType>(InputSimdWidth, 8); | ||
constexpr IndexType NumChunks = InputDimensions / ChunkSize; | ||
constexpr IndexType InputsPerChunk = ChunkSize / InputSimdWidth; | ||
constexpr IndexType OutputsPerChunk = ChunkSize / 8; | ||
|
||
const auto inputVector = reinterpret_cast<const vec_t*>(input); | ||
IndexType count = 0; | ||
__m128i base = _mm_set1_epi16(0); | ||
__m128i increment = _mm_set1_epi16(8); | ||
for (IndexType i = 0; i < NumChunks; ++i) | ||
{ | ||
// bitmask of nonzero values in this chunk | ||
unsigned nnz = 0; | ||
for (IndexType j = 0; j < InputsPerChunk; ++j) | ||
{ | ||
const vec_t inputChunk = inputVector[i * InputsPerChunk + j]; | ||
nnz |= (unsigned)vec_nnz(inputChunk) << (j * InputSimdWidth); | ||
} | ||
for (IndexType j = 0; j < OutputsPerChunk; ++j) | ||
{ | ||
const auto lookup = (nnz >> (j * 8)) & 0xFF; | ||
const auto offsets = _mm_loadu_si128(reinterpret_cast<const __m128i*>(&lookup_indices[lookup])); | ||
_mm_storeu_si128(reinterpret_cast<__m128i*>(out + count), _mm_add_epi16(base, offsets)); | ||
count += lookup_count[lookup]; | ||
base = _mm_add_epi16(base, increment); | ||
} | ||
} | ||
count_out = count; | ||
} | ||
# undef vec_nnz | ||
#endif | ||
|
||
// Sparse input implementation | ||
template <IndexType InDims, IndexType OutDims> | ||
class AffineTransformSparseInput { | ||
public: | ||
// Input/output type | ||
// Input/output type | ||
using InputType = std::uint8_t; | ||
using OutputType = std::int32_t; | ||
|
||
// Number of input/output dimensions | ||
static constexpr IndexType InputDimensions = InDims; | ||
static constexpr IndexType OutputDimensions = OutDims; | ||
|
||
static_assert(OutputDimensions % 16 == 0, "Only implemented for OutputDimensions divisible by 16."); | ||
|
||
static constexpr IndexType PaddedInputDimensions = | ||
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth); | ||
static constexpr IndexType PaddedOutputDimensions = | ||
ceil_to_multiple<IndexType>(OutputDimensions, MaxSimdWidth); | ||
|
||
#if defined (USE_SSSE3) | ||
static constexpr IndexType ChunkSize = 4; | ||
#else | ||
static constexpr IndexType ChunkSize = 1; | ||
#endif | ||
|
||
using OutputBuffer = OutputType[PaddedOutputDimensions]; | ||
|
||
// Hash value embedded in the evaluation file | ||
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) { | ||
std::uint32_t hashValue = 0xCC03DAE4u; | ||
hashValue += OutputDimensions; | ||
hashValue ^= prevHash >> 1; | ||
hashValue ^= prevHash << 31; | ||
return hashValue; | ||
} | ||
|
||
static IndexType get_weight_index_scrambled(IndexType i) | ||
{ | ||
return | ||
(i / ChunkSize) % (PaddedInputDimensions / ChunkSize) * OutputDimensions * ChunkSize + | ||
i / PaddedInputDimensions * ChunkSize + | ||
i % ChunkSize; | ||
} | ||
|
||
static IndexType get_weight_index(IndexType i) | ||
{ | ||
#if defined (USE_SSSE3) | ||
return get_weight_index_scrambled(i); | ||
#else | ||
return i; | ||
#endif | ||
} | ||
|
||
// Read network parameters | ||
bool read_parameters(std::istream& stream) { | ||
read_little_endian<BiasType>(stream, biases, OutputDimensions); | ||
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) | ||
weights[get_weight_index(i)] = read_little_endian<WeightType>(stream); | ||
|
||
return !stream.fail(); | ||
} | ||
|
||
// Write network parameters | ||
bool write_parameters(std::ostream& stream) const { | ||
write_little_endian<BiasType>(stream, biases, OutputDimensions); | ||
|
||
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) | ||
write_little_endian<WeightType>(stream, weights[get_weight_index(i)]); | ||
|
||
return !stream.fail(); | ||
} | ||
// Forward propagation | ||
const OutputType* propagate( | ||
const InputType* input, OutputType* output) const { | ||
|
||
#if defined (USE_SSSE3) | ||
#if defined (USE_AVX512) | ||
using vec_t = __m512i; | ||
#define vec_setzero _mm512_setzero_si512 | ||
#define vec_set_32 _mm512_set1_epi32 | ||
#define vec_add_dpbusd_32 Simd::m512_add_dpbusd_epi32 | ||
#elif defined (USE_AVX2) | ||
using vec_t = __m256i; | ||
#define vec_setzero _mm256_setzero_si256 | ||
#define vec_set_32 _mm256_set1_epi32 | ||
#define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32 | ||
#elif defined (USE_SSSE3) | ||
using vec_t = __m128i; | ||
#define vec_setzero _mm_setzero_si128 | ||
#define vec_set_32 _mm_set1_epi32 | ||
#define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32 | ||
#endif | ||
static constexpr IndexType OutputSimdWidth = sizeof(vec_t) / sizeof(OutputType); | ||
|
||
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 8) / ChunkSize; | ||
constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth; | ||
std::uint16_t nnz[NumChunks]; | ||
IndexType count; | ||
|
||
const auto input32 = reinterpret_cast<const std::int32_t*>(input); | ||
|
||
// Find indices of nonzero 32bit blocks | ||
find_nnz<NumChunks>(input32, nnz, count); | ||
|
||
const vec_t* biasvec = reinterpret_cast<const vec_t*>(biases); | ||
vec_t acc[NumRegs]; | ||
for (IndexType k = 0; k < NumRegs; ++k) | ||
acc[k] = biasvec[k]; | ||
|
||
for (IndexType j = 0; j < count; ++j) | ||
{ | ||
const auto i = nnz[j]; | ||
const vec_t in = vec_set_32(input32[i]); | ||
const auto col = reinterpret_cast<const vec_t*>(&weights[i * OutputDimensions * ChunkSize]); | ||
for (IndexType k = 0; k < NumRegs; ++k) | ||
vec_add_dpbusd_32(acc[k], in, col[k]); | ||
} | ||
|
||
vec_t* outptr = reinterpret_cast<vec_t*>(output); | ||
for (IndexType k = 0; k < NumRegs; ++k) | ||
outptr[k] = acc[k]; | ||
# undef vec_setzero | ||
# undef vec_set_32 | ||
# undef vec_add_dpbusd_32 | ||
#else | ||
// Use dense implementation for the other architectures. | ||
affine_transform_non_ssse3< | ||
InputDimensions, | ||
PaddedInputDimensions, | ||
OutputDimensions>(output, weights, biases, input); | ||
#endif | ||
|
||
return output; | ||
} | ||
|
||
private: | ||
using BiasType = OutputType; | ||
using WeightType = std::int8_t; | ||
|
||
alignas(CacheLineSize) BiasType biases[OutputDimensions]; | ||
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions]; | ||
}; | ||
|
||
} // namespace Stockfish::Eval::NNUE::Layers | ||
|
||
#endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_SPARSE_INPUT_H_INCLUDED |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters