This repo is largely borrowed from LinearityIQA.
Requirements:
- python==3.6.9
- torch==1.8.1 (with cuda v10.2, cudnn v7.6)
- torchvision==0.9.1
- pytorch-ignite==0.4.2
- h5py==2.10.0
- matplotlib==3.1.3
- numpy==1.18.1
- pandas==0.25.3
- Pillow==6.2.1
- scikit-learn==0.24.1
- scikit-video==1.1.11
- scipy==1.5.4
ln -s KonIQ-10k_database_path KonIQ-10k
ln -s CLIVE_database_path CLIVE
ln -s KoNViD-1k_database_path KoNViD-1k
ln -s LIVE-VQC_database_path LIVE-VQC
# training and intra-dataset evaluation
python IQAmain.py -pretrained 0 -ft_lr_ratio 0.0 --arch resnet18; python IQAmain.py -pretrained 1 -ft_lr_ratio 0.0 --arch resnet18; python IQAmain.py -pretrained 0 -ft_lr_ratio 1.0 --arch resnet18; python IQAmain.py -pretrained 1 -ft_lr_ratio 0.1 --arch resnet18
python IQAmain.py -pretrained 0 -ft_lr_ratio 0.0 --arch resnet34; python IQAmain.py -pretrained 1 -ft_lr_ratio 0.0 --arch resnet34; python IQAmain.py -pretrained 0 -ft_lr_ratio 1.0 --arch resnet34; python IQAmain.py -pretrained 1 -ft_lr_ratio 0.1 --arch resnet34
python IQAmain.py -pretrained 0 -ft_lr_ratio 0.0 --arch resnet50; python IQAmain.py -pretrained 1 -ft_lr_ratio 0.0 --arch resnet50; python IQAmain.py -pretrained 0 -ft_lr_ratio 1.0 --arch resnet50; python IQAmain.py -pretrained 1 -ft_lr_ratio 0.1 --arch resnet50
python IQAmain.py -pretrained 0 -ft_lr_ratio 0.0 --arch resnext101_32x8d; python IQAmain.py -pretrained 1 -ft_lr_ratio 0.0 --arch resnext101_32x8d; python IQAmain.py -pretrained 0 -ft_lr_ratio 1.0 --arch resnext101_32x8d; python IQAmain.py -pretrained 1 -ft_lr_ratio 0.1 --arch resnext101_32x8d
python IQAmain.py -pretrained 0 -ft_lr_ratio 0.0 --arch alexnet; python IQAmain.py -pretrained 1 -ft_lr_ratio 0.0 --arch alexnet; python IQAmain.py -pretrained 0 -ft_lr_ratio 1.0 --arch alexnet; python IQAmain.py -pretrained 1 -ft_lr_ratio 0.1 --arch alexnet
python IQAmain.py -pretrained 0 -ft_lr_ratio 0.0 --arch vgg16; python IQAmain.py -pretrained 1 -ft_lr_ratio 0.0 --arch vgg16; python IQAmain.py -pretrained 0 -ft_lr_ratio 1.0 --arch vgg16; python IQAmain.py -pretrained 1 -ft_lr_ratio 0.1 --arch vgg16
python IQAmain.py -pretrained 0 -ft_lr_ratio 0.0 --arch googlenet; python IQAmain.py -pretrained 1 -ft_lr_ratio 0.0 --arch googlenet; python IQAmain.py -pretrained 0 -ft_lr_ratio 1.0 --arch googlenet; python IQAmain.py -pretrained 1 -ft_lr_ratio 0.1 --arch googlenet
# cross-dataset evaluation
python test_IQAdataset.py -pretrained 0 -ft_lr_ratio 0.0 --arch resnet18; python test_IQAdataset.py -pretrained 1 -ft_lr_ratio 0.0 --arch resnet18; python test_IQAdataset.py -pretrained 0 -ft_lr_ratio 1.0 --arch resnet18; python test_IQAdataset.py -pretrained 1 -ft_lr_ratio 0.1 --arch resnet18
python test_IQAdataset.py -pretrained 0 -ft_lr_ratio 0.0 --arch resnet34; python test_IQAdataset.py -pretrained 1 -ft_lr_ratio 0.0 --arch resnet34; python test_IQAdataset.py -pretrained 0 -ft_lr_ratio 1.0 --arch resnet34; python test_IQAdataset.py -pretrained 1 -ft_lr_ratio 0.1 --arch resnet34
python test_IQAdataset.py -pretrained 0 -ft_lr_ratio 0.0 --arch resnet50; python test_IQAdataset.py -pretrained 1 -ft_lr_ratio 0.0 --arch resnet50; python test_IQAdataset.py -pretrained 0 -ft_lr_ratio 1.0 --arch resnet50; python test_IQAdataset.py -pretrained 1 -ft_lr_ratio 0.1 --arch resnet50
python test_IQAdataset.py -pretrained 0 -ft_lr_ratio 0.0 --arch resnext101_32x8d; python test_IQAdataset.py -pretrained 1 -ft_lr_ratio 0.0 --arch resnext101_32x8d; python test_IQAdataset.py -pretrained 0 -ft_lr_ratio 1.0 --arch resnext101_32x8d; python test_IQAdataset.py -pretrained 1 -ft_lr_ratio 0.1 --arch resnext101_32x8d
python test_IQAdataset.py -pretrained 0 -ft_lr_ratio 0.0 --arch alexnet; python test_IQAdataset.py -pretrained 1 -ft_lr_ratio 0.0 --arch alexnet; python test_IQAdataset.py -pretrained 0 -ft_lr_ratio 1.0 --arch alexnet; python test_IQAdataset.py -pretrained 1 -ft_lr_ratio 0.1 --arch alexnet
python test_IQAdataset.py -pretrained 0 -ft_lr_ratio 0.0 --arch vgg16; python test_IQAdataset.py -pretrained 1 -ft_lr_ratio 0.0 --arch vgg16; python test_IQAdataset.py -pretrained 0 -ft_lr_ratio 1.0 --arch vgg16; python test_IQAdataset.py -pretrained 1 -ft_lr_ratio 0.1 --arch vgg16
python test_IQAdataset.py -pretrained 0 -ft_lr_ratio 0.0 --arch googlenet; python test_IQAdataset.py -pretrained 1 -ft_lr_ratio 0.0 --arch googlenet; python test_IQAdataset.py -pretrained 0 -ft_lr_ratio 1.0 --arch googlenet; python test_IQAdataset.py -pretrained 1 -ft_lr_ratio 0.1 --arch googlenet
for i in $(seq 0 3); do python FeatureExtractor.py --arch resnet50 -fim $i; done
# training and intra-dataset evaluation
for i in $(seq 0 9); do python VQAmain.py --arch resnet50 -fim 3 -rim 1 -g 16 --exp_id $i; done
for i in $(seq 0 9); do python VQAmain.py --arch resnet50 -fim 3 -rim 0 -g 16 --exp_id $i; done
for i in $(seq 0 9); do python VQAmain.py --arch resnet50 -fim 2 -rim 1 -g 16 --exp_id $i; done
for i in $(seq 0 9); do python VQAmain.py --arch resnet50 -fim 2 -rim 0 -g 16 --exp_id $i; done
for i in $(seq 0 9); do python VQAmain.py --arch resnet50 -fim 1 -rim 1 -g 16 --exp_id $i; done
for i in $(seq 0 9); do python VQAmain.py --arch resnet50 -fim 1 -rim 0 -g 16 --exp_id $i; done
for i in $(seq 0 9); do python VQAmain.py --arch resnet50 -fim 0 -rim 1 -g 16 --exp_id $i; done
for i in $(seq 0 9); do python VQAmain.py --arch resnet50 -fim 0 -rim 0 -g 16 --exp_id $i; done
# cross-dataset evaluation
for i in $(seq 0 3); do python test_VQAdataset.py --arch resnet50 -fim $i -rim 1 -g 16; python test_VQAdataset.py --arch resnet50 -fim $i -rim 0 -g 16; done
cd analysis
python results_analysis.py # You need to download and rename the csv files which contain data in the TensorBoard writer.
Our technical report is provided here. If you find this useful, please kindly cite it.
@techreport{li2022iqa4vqa,
title = {Initialize and Train a Unified Quality Assessment Model for Images/Videos in the Wild},
author = {Dingquan Li and Haiqiang Wang and Wei Gao and Ge Li},
year = {2022},
pages = {1--10},
institution = {Peng Cheng Laboratory},
url = {https://github.com/lidq92/IQA4VQA}
}