forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
merged upstream develop and resloved conflict
- Loading branch information
Showing
194 changed files
with
13,120 additions
and
1,468 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,29 +1,22 @@ | ||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/arg_min_max_op_base.h" | ||
|
||
REGISTER_OP_CUDA_KERNEL( | ||
arg_max, | ||
paddle::operators::ArgMaxKernel<paddle::platform::CUDADeviceContext, float>, | ||
paddle::operators::ArgMaxKernel<paddle::platform::CUDADeviceContext, | ||
double>, | ||
paddle::operators::ArgMaxKernel<paddle::platform::CUDADeviceContext, | ||
int64_t>, | ||
paddle::operators::ArgMaxKernel<paddle::platform::CUDADeviceContext, | ||
int32_t>, | ||
paddle::operators::ArgMaxKernel<paddle::platform::CUDADeviceContext, | ||
int16_t>, | ||
paddle::operators::ArgMaxKernel<paddle::platform::CUDADeviceContext, | ||
uint8_t>); | ||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/arg_min_max_op_base.cu.h" | ||
|
||
REGISTER_OP_CUDA_KERNEL( | ||
arg_max, paddle::operators::ArgMinMaxOpCUDAKernel<float, cub::ArgMax>, | ||
paddle::operators::ArgMinMaxOpCUDAKernel<double, cub::ArgMax>, | ||
paddle::operators::ArgMinMaxOpCUDAKernel<int64_t, cub::ArgMax>, | ||
paddle::operators::ArgMinMaxOpCUDAKernel<int32_t, cub::ArgMax>, | ||
paddle::operators::ArgMinMaxOpCUDAKernel<int8_t, cub::ArgMax>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#ifdef __NVCC__ | ||
|
||
#include <cub/cub.cuh> | ||
#include <limits> | ||
#include <string> | ||
#include <typeinfo> | ||
#include <vector> | ||
#include "paddle/fluid/framework/ddim.h" | ||
#include "paddle/fluid/framework/tensor.h" | ||
#include "paddle/fluid/operators/transpose_op.h" | ||
#include "paddle/fluid/platform/device_context.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
namespace { // NOLINT | ||
template <typename K, typename V> | ||
using KeyValuePair = cub::KeyValuePair<K, V>; | ||
using Tensor = framework::Tensor; | ||
|
||
} // end namespace | ||
|
||
#define FIXED_BLOCK_DIM_CASE_BASE(log2_block_dim, ...) \ | ||
case (1 << (log2_block_dim)): { \ | ||
constexpr auto kBlockDim = (1 << (log2_block_dim)); \ | ||
__VA_ARGS__; \ | ||
} break | ||
|
||
#define FIXED_BLOCK_DIM_CASE(...) \ | ||
FIXED_BLOCK_DIM_CASE_BASE(10, ##__VA_ARGS__); \ | ||
FIXED_BLOCK_DIM_CASE_BASE(9, ##__VA_ARGS__); \ | ||
FIXED_BLOCK_DIM_CASE_BASE(8, ##__VA_ARGS__); \ | ||
FIXED_BLOCK_DIM_CASE_BASE(7, ##__VA_ARGS__); \ | ||
FIXED_BLOCK_DIM_CASE_BASE(6, ##__VA_ARGS__); \ | ||
FIXED_BLOCK_DIM_CASE_BASE(5, ##__VA_ARGS__); \ | ||
FIXED_BLOCK_DIM_CASE_BASE(4, ##__VA_ARGS__); \ | ||
FIXED_BLOCK_DIM_CASE_BASE(3, ##__VA_ARGS__); | ||
|
||
template <typename T, typename IndType, class Reducer, size_t BlockDim> | ||
__global__ void ArgCUDAKernel(const IndType height, // n * h | ||
const IndType width, // c | ||
const IndType post_size, // h | ||
const Reducer reducer, const T init, const T* in, | ||
IndType* out) { | ||
typedef cub::BlockReduce<KeyValuePair<int, T>, BlockDim> BlockReduce; | ||
__shared__ typename BlockReduce::TempStorage temp_storage; | ||
|
||
for (int idx = blockIdx.x; idx < height; idx += gridDim.x) { | ||
KeyValuePair<int, T> kv_pair = {-1, init}; | ||
int h = idx / post_size; | ||
int w = idx % post_size; | ||
for (int k = threadIdx.x; k < width; k += blockDim.x) { | ||
kv_pair = | ||
reducer({k, in[h * width * post_size + k * post_size + w]}, kv_pair); | ||
} | ||
kv_pair = BlockReduce(temp_storage).Reduce(kv_pair, reducer); | ||
if (threadIdx.x == 0) { | ||
out[idx] = static_cast<IndType>(kv_pair.key); | ||
} | ||
__syncthreads(); | ||
} | ||
} | ||
|
||
template <typename T, typename IndType, class Reducer> | ||
void ComputeFullArg(const platform::CUDADeviceContext& ctx, const Tensor& input, | ||
Tensor* indices, const IndType pre, const IndType post, | ||
const IndType n) { | ||
auto cu_stream = ctx.stream(); | ||
auto ComputeBlockSize = [](IndType col) { | ||
if (col > 512) | ||
return 1024; | ||
else if (col > 256) | ||
return 512; | ||
else if (col > 128) | ||
return 256; | ||
else if (col > 64) | ||
return 128; | ||
else if (col > 32) | ||
return 64; | ||
else if (col > 16) | ||
return 32; | ||
else if (col > 8) | ||
return 16; | ||
else | ||
return 8; | ||
}; | ||
|
||
int max_grid_dimx = ctx.GetCUDAMaxGridDimSize().x; | ||
int height = pre * post; | ||
int width = n; | ||
int grid_size = height < max_grid_dimx ? height : max_grid_dimx; | ||
|
||
const T* in_data = input.data<T>(); | ||
IndType* out_data = indices->mutable_data<IndType>(ctx.GetPlace()); | ||
|
||
if (typeid(Reducer) == typeid(cub::ArgMax)) { | ||
switch (ComputeBlockSize(width)) { | ||
FIXED_BLOCK_DIM_CASE( | ||
ArgCUDAKernel<T, IndType, Reducer, | ||
kBlockDim><<<grid_size, kBlockDim, 0, cu_stream>>>( | ||
height, width, post, Reducer(), std::numeric_limits<T>::lowest(), | ||
in_data, out_data)); | ||
} | ||
} else { | ||
switch (ComputeBlockSize(width)) { | ||
FIXED_BLOCK_DIM_CASE( | ||
ArgCUDAKernel<T, IndType, Reducer, | ||
kBlockDim><<<grid_size, kBlockDim, 0, cu_stream>>>( | ||
height, width, post, Reducer(), std::numeric_limits<T>::max(), | ||
in_data, out_data)); | ||
} | ||
} | ||
} | ||
|
||
template <typename T, class Reducer> | ||
class ArgMinMaxOpCUDAKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* input = ctx.Input<Tensor>("X"); | ||
auto* output = ctx.Output<Tensor>("Out"); | ||
int axis = ctx.Attr<int64_t>("axis"); | ||
auto in_dims = input->dims(); | ||
axis = (axis < 0) ? (in_dims.size() + axis) : axis; | ||
|
||
int64_t numel = input->numel(); | ||
int64_t groups = numel / in_dims[axis]; | ||
int64_t pre = 1; | ||
int64_t post = 1; | ||
int64_t n = in_dims[axis]; | ||
|
||
for (int i = 0; i < axis; i++) { | ||
pre *= in_dims[i]; | ||
} | ||
|
||
for (int i = axis + 1; i < in_dims.size(); i++) { | ||
post *= in_dims[i]; | ||
} | ||
|
||
const auto& dev_ctx = ctx.cuda_device_context(); | ||
ComputeFullArg<T, int64_t, Reducer>(dev_ctx, *input, output, pre, post, n); | ||
} | ||
}; | ||
|
||
#endif | ||
|
||
} // namespace operators | ||
} // namespace paddle |
Oops, something went wrong.