Skip to content

[IEEE TVT] FII-CenterNet: an anchor-free detector with foreground attention for traffic object detection

License

Notifications You must be signed in to change notification settings

leofansq/FII-CenterNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FII-CenterNet: An Anchor-free Detector with Foreground Attention for Traffic Object Detection

architecture

For technical details, please refer to:

FII-CenterNet: An Anchor-free Detector with Foreground Attention for Traffic Object Detection

(0) Abstract

Most successful object detectors are anchor-based, which is difficult to adapt to the diversity of traffic objects. We propose a novel anchor-free method, called FIICenterNet. It introduces the foreground information to CenterNet to eliminate the interference of complex background information in traffic scenes. The foreground region proposal network is based on semantic segmentation. Midground is introduced as the transition between foreground and background. In addition to foreground location information, scale information is introduced to improve the regression results.

abstract

(1) Setup

This code has been tested with Python 3.6, PyTorch v0.4.1, CUDA 9.0 and cuDNN v7 on Ubuntu 16.04.

  • Setup python environment

    conda create -n FIICenterNet python=3.6
    source activate FIICenterNet
    
  • Install pytorch0.4.1

    conda install pytorch=0.4.1 torchvision -c pytorch
    
  • Install COCOAPI

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    make
    python setup.py install --user
    
  • Clone the repository

  • Install the requirements

    pip install -r requirements.txt
    
  • Compile deformable convolutional (from DCNv2)

    cd $FIICenterNet_ROOT/src/lib/models/networks/DCNv2
    ./make.sh
    
  • [Optional] Compile NMS if your want to use multi-scale testing or test ExtremeNe.

    cd $FIICenterNet_ROOT/src/lib/external
    make
    
  • Download pertained models

    Dataset Pretrained Model Results
    KITTI Baidu: 3xdh Baidu: sb67
    Pascal VOC Baidu: xhta Baidu: f0oi

(2) KITTI

KITTI

  • Preparing the dataset

    Dataset is transformed to COCO foramt to train for now.

    • Download the dataset KITTI
    • File structure
      FII-CenterNet Root
      |---- data
           |---- kitti
                 |---- training
                       |---- Labels (containing download labels txt)
           |---- KITTI_COCO
                 |---- annotations (containing transformed jason)
                 |---- images (containing download taining images)
                 |---- test_images (conmtaining download testing images)
      

      transformed annotations Baidu: t55q

  • Training

    python main.py ctdet --exp_id kitti_exp --dataset=kitti --batch_size 8 --gpus 0 --attention --wh_weight=0.1 --lr=1e-4
    

    For Evaluation: rename ./src/lib/datasets/dataset/kitti_half.py to kitti.py

    For Testing: rename ./src/lib/datasets/dataset/kitti_full.py to kitti.py

  • Evaluation

    • Predict
    python test.py --exp_id kitti_exp --not_prefetch_test ctdet --dataset=kitti --load_model /your_path/your_model.pth --attention --flip_test
    
    • Evaluate
    ./tools/kitti_eval/evaluate_object_3d_offline ../data/kitti/training/Labels/ /your_path/results/
    
  • Testing

    python test.py --exp_id kitti_full --not_prefetch_test ctdet --dataset=kitti --load_model /your_path/model_last.pth --attention --flip_test --trainval
    

(3) Pascal VOC

voc

  • Preparing the dataset

    Train on VOC 2007 and VOC 2012 trainval sets and test on VOC 2007 test set. Dataset is transformed to COCO foramt to train for now.

    • Download the dataset
    • File structure
      FII-CenterNet Root
      |---- data
           |---- VOC_COCO
                 |---- Annotations (containing download annotations xml)
                 |---- annotations (containing transformed jason)
                 |---- images (containing download taining images)
      

      transformed annotations Baidu: qbhp

  • Training

    python main.py ctdet --exp_id voc_exp --batch_size 32 --gpus 0,1 --attention --wh_weight=0.1 --lr=1.25e-4 --num_epochs=140 --lr_step='90,120'
    
  • Evaluation

    • Predict
    python test.py --exp_id voc_exp --not_prefetch_test ctdet --load_model /your_path/your_model.pth --attention --flip_test --trainval
    
    • Evaluate
    python tools/reval.py /your_path/results.json
    

(4) Visualization

demo

python demo.py ctdet --demo /.../FII-CenterNet/kitti_images/ --load_model /your_path/your_model.pth --attention --debug=2

Citation

If you find our work useful in your research, please consider citing:

@ARTICLE{9316984,
  author={Fan, Siqi and Zhu, Fenghua and Chen, Shichao and Zhang, Hui and Tian, Bin and Lv, Yisheng and Wang, Fei-Yue},
  journal={IEEE Transactions on Vehicular Technology}, 
  title={FII-CenterNet: An Anchor-Free Detector With Foreground Attention for Traffic Object Detection}, 
  year={2021},
  volume={70},
  number={1},
  pages={121-132},
  doi={10.1109/TVT.2021.3049805}}

Acknowledgment

Part of our code refers to the recent work Objects as Points.

About

[IEEE TVT] FII-CenterNet: an anchor-free detector with foreground attention for traffic object detection

Topics

Resources

License

Stars

Watchers

Forks