Skip to content

leo-yangli/dep-l0

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dep-L0

This repository contains the code for Dep-L0: Improving L0-based Network Sparsification via Dependency Modeling.

Demo

Requirments

torch
torchvision
tensorboardX

Usage

VGG16 + C10

forward: python train_vgg.py --net dep --num_classes 10 --lamba 1e-6  --gpu [ID]
backward: python train_vgg.py --net dep --back_dep --num_classes 10 --lamba 1e-6 --gpu [ID]
hc: python train_vgg.py --net hc  --num_classes 10 --lamba 5e-7 --gpu [ID]

VGG16 + C100:

forward: python train_vgg.py --net dep  --num_classes 100 --lamba 1e-6  --gpu [ID]
backward: python train_vgg.py --net dep  --back_dep  --num_classes 100 --lamba 1e-6--gpu [ID]
hc: python train_vgg.py --net hc  --num_classes 100 --lamba 5e-7 --gpu [ID]

ResNet 56 + C10:

forward: python train_resnet56.py --net dep  --num_classes 10 --lamba 5e-7  --gpu [ID]
backward: python train_resnet56.py --net dep --back_dep  --num_classes 10 --lamba 1e-6 --gpu [ID]
hc: python train_resnet56.py --net hc  --num_classes 10 --lamba 5e-7 --gpu [ID]

ResNet 56 + C100:

forward: python train_resnet56.py --net dep  --num_classes 100 --lamba 5e-7 --gpu [ID]
backward: python train_resnet56.py --net dep --back_dep  --num_classes 100 --lamba 1e-6 --gpu [ID]
hc: python train_resnet56.py --net hc  --num_classes 100 --lamba 5e-7 --gpu [ID]

ResNet 50 + ImageNet

forward: python train_resnet50.py [imagenet_dir] --net dep  --lamba 5e-9 --gpu_id [ID] 
backward: python train_resnet50.py [imagenet_dir] --net dep --back_dep --lamba 5e-9 --gpu_id [ID] 
hc: python train_resnet50.py [imagenet_dir] --net hc --lamba 5e-9 --gpu_id [ID] 

Citation

If you found this code useful, please cite our paper.

@inproceedings{depl02021,
  title={{Dep-L0}: Improving L0-based Network Sparsification via Dependency Modeling,
  author={Yang Li and Shihao Ji},
  booktitle={The European Conference on Machine Learning (ECML)},
  year={2021}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages