Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add BitVec.neg_neg #4977

Merged
merged 5 commits into from
Aug 12, 2024
Merged
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 23 additions & 2 deletions src/Init/Data/BitVec/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -162,6 +162,16 @@ theorem toNat_zero (n : Nat) : (0#n).toNat = 0 := by trivial
@[simp] theorem toNat_mod_cancel (x : BitVec n) : x.toNat % (2^n) = x.toNat :=
Nat.mod_eq_of_lt x.isLt

@[simp] theorem sub_toNat_mod_cancel {x : BitVec w} (h : ¬ x = 0#w) :
(2 ^ w - x.toNat) % 2 ^ w = 2 ^ w - x.toNat := by
simp [bv_toNat] at h
tobiasgrosser marked this conversation as resolved.
Show resolved Hide resolved
rw [Nat.mod_eq_of_lt (by omega)]

@[simp] theorem sub_sub_toNat_cancel {x : BitVec w} :
2 ^ w - (2 ^ w - x.toNat) = x.toNat := by
simp [Nat.sub_sub_eq_min, Nat.min_eq_right]
omega

private theorem lt_two_pow_of_le {x m n : Nat} (lt : x < 2 ^ m) (le : m ≤ n) : x < 2 ^ n :=
Nat.lt_of_lt_of_le lt (Nat.pow_le_pow_of_le_right (by trivial : 0 < 2) le)

Expand Down Expand Up @@ -300,8 +310,7 @@ theorem truncate_eq_zeroExtend {v : Nat} {x : BitVec w} :

@[simp, bv_toNat] theorem toNat_zeroExtend' {m n : Nat} (p : m ≤ n) (x : BitVec m) :
(zeroExtend' p x).toNat = x.toNat := by
unfold zeroExtend'
simp [p, x.isLt, Nat.mod_eq_of_lt]
simp [zeroExtend']

@[bv_toNat] theorem toNat_zeroExtend (i : Nat) (x : BitVec n) :
BitVec.toNat (zeroExtend i x) = x.toNat % 2^i := by
Expand Down Expand Up @@ -1248,6 +1257,18 @@ theorem neg_eq_not_add (x : BitVec w) : -x = ~~~x + 1 := by
have hx : x.toNat < 2^w := x.isLt
rw [Nat.sub_sub, Nat.add_comm 1 x.toNat, ← Nat.sub_sub, Nat.sub_add_cancel (by omega)]

@[simp]
theorem neg_neg {x : BitVec w} : - - x = x := by
by_cases h : x = 0#w
· simp [h]
· simp [bv_toNat, h]

theorem neg_ne_iff_ne_neg {x y : BitVec w} : -x ≠ y ↔ x ≠ -y := by
constructor
<;> intro h h'
<;> subst h'
<;> simp [BitVec.neg_neg] at h
tobiasgrosser marked this conversation as resolved.
Show resolved Hide resolved

/-! ### mul -/

theorem mul_def {n} {x y : BitVec n} : x * y = (ofFin <| x.toFin * y.toFin) := by rfl
Expand Down
Loading