Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: upstream List.pairwise_iff_getElem #4866

Merged
merged 2 commits into from
Jul 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/Init/Data/List/Nat.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,5 +5,6 @@ Authors: Kim Morrison
-/
prelude
import Init.Data.List.Nat.Basic
import Init.Data.List.Nat.Pairwise
import Init.Data.List.Nat.Range
import Init.Data.List.Nat.TakeDrop
73 changes: 73 additions & 0 deletions src/Init/Data/List/Nat/Pairwise.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, James Gallicchio
-/
prelude
import Init.Data.Fin.Lemmas
import Init.Data.List.Nat.TakeDrop
import Init.Data.List.Pairwise

/-!
# Lemmas about `List.Pairwise`
-/

namespace List

/-- Given a list `is` of monotonically increasing indices into `l`, getting each index
produces a sublist of `l`. -/
theorem map_getElem_sublist {l : List α} {is : List (Fin l.length)} (h : is.Pairwise (· < ·)) :
is.map (l[·]) <+ l := by
suffices ∀ n l', l' = l.drop n → (∀ i ∈ is, n ≤ i) → map (l[·]) is <+ l'
from this 0 l (by simp) (by simp)
rintro n l' rfl his
induction is generalizing n with
| nil => simp
| cons hd tl IH =>
simp only [Fin.getElem_fin, map_cons]
have := IH h.of_cons (hd+1) (pairwise_cons.mp h).1
specialize his hd (.head _)
have := (drop_eq_getElem_cons ..).symm ▸ this.cons₂ (get l hd)
have := Sublist.append (nil_sublist (take hd l |>.drop n)) this
rwa [nil_append, ← (drop_append_of_le_length ?_), take_append_drop] at this
simp [Nat.min_eq_left (Nat.le_of_lt hd.isLt), his]

@[deprecated map_getElem_sublist (since := "2024-07-30")]
theorem map_get_sublist {l : List α} {is : List (Fin l.length)} (h : is.Pairwise (·.val < ·.val)) :
is.map (get l) <+ l := by
simpa using map_getElem_sublist h

/-- Given a sublist `l' <+ l`, there exists an increasing list of indices `is` such that
`l' = is.map fun i => l[i]`. -/
theorem sublist_eq_map_getElem {l l' : List α} (h : l' <+ l) : ∃ is : List (Fin l.length),
l' = is.map (l[·]) ∧ is.Pairwise (· < ·) := by
induction h with
| slnil => exact ⟨[], by simp⟩
| cons _ _ IH =>
let ⟨is, IH⟩ := IH
refine ⟨is.map (·.succ), ?_⟩
simpa [Function.comp_def, pairwise_map]
| cons₂ _ _ IH =>
rcases IH with ⟨is,IH⟩
refine ⟨⟨0, by simp [Nat.zero_lt_succ]⟩ :: is.map (·.succ), ?_⟩
simp [Function.comp_def, pairwise_map, IH, ← get_eq_getElem]

@[deprecated sublist_eq_map_getElem (since := "2024-07-30")]
theorem sublist_eq_map_get (h : l' <+ l) : ∃ is : List (Fin l.length),
l' = map (get l) is ∧ is.Pairwise (· < ·) := by
simpa using sublist_eq_map_getElem h

theorem pairwise_iff_getElem : Pairwise R l ↔
∀ (i j : Nat) (_hi : i < l.length) (_hj : j < l.length) (_hij : i < j), R l[i] l[j] := by
rw [pairwise_iff_forall_sublist]
constructor <;> intro h
· intros i j hi hj h'
apply h
simpa [h'] using map_getElem_sublist (is := [⟨i, hi⟩, ⟨j, hj⟩])
· intros a b h'
have ⟨is, h', hij⟩ := sublist_eq_map_getElem h'
rcases is with ⟨⟩ | ⟨a', ⟨⟩ | ⟨b', ⟨⟩⟩⟩ <;> simp at h'
rcases h' with ⟨rfl, rfl⟩
apply h; simpa using hij

end List
Loading