Skip to content

Commit

Permalink
chore: remove unnecessary @[eqns] attributes (#11460)
Browse files Browse the repository at this point in the history
These attributes are unused in Mathlib.

Many of them were workarounds for the now-resolved leanprover/lean4#2243; this also allows the lemmas themselves (`hasFiniteIntegral_def`, `integrable_def`, `memℒp_def`, and `integrableOn_def`) to be deleted.

We are currently experiencing problems with the `@[eqns]` attribute on the Lean nightlies. I'm uncertain yet what the outcome is going to be there, but it seems prudent to reduce our unnecessary exposure to a language feature added in Mathlib.

Co-authored-by: Scott Morrison <[email protected]>
  • Loading branch information
2 people authored and atarnoam committed Apr 16, 2024
1 parent 86444d8 commit c28365c
Show file tree
Hide file tree
Showing 9 changed files with 9 additions and 36 deletions.
2 changes: 1 addition & 1 deletion Mathlib/Analysis/SpecialFunctions/Gaussian.lean
Original file line number Diff line number Diff line change
Expand Up @@ -118,7 +118,7 @@ theorem integrableOn_rpow_mul_exp_neg_mul_rpow {p s b : ℝ} (hs : -1 < s) (hp :
rpow_neg_one, mul_inv_cancel_left₀]
all_goals linarith [mem_Ioi.mp hx]
refine Integrable.const_mul ?_ _
rw [← integrableOn_def]
rw [← IntegrableOn]
exact integrableOn_rpow_mul_exp_neg_rpow hs hp

theorem integrableOn_rpow_mul_exp_neg_mul_sq {b : ℝ} (hb : 0 < b) {s : ℝ} (hs : -1 < s) :
Expand Down
4 changes: 1 addition & 3 deletions Mathlib/Computability/TMToPartrec.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1240,8 +1240,7 @@ def K'.elim (a b c d : List Γ') : K' → List Γ'
| K'.stack => d
#align turing.partrec_to_TM2.K'.elim Turing.PartrecToTM2.K'.elim

/- Porting note: The equation lemma of `elim` simplifies to `match` structures. To prevent this,
we replace equation lemmas of `elim`. -/
-- The equation lemma of `elim` simplifies to `match` structures.

theorem K'.elim_main (a b c d) : K'.elim a b c d K'.main = a := rfl

Expand All @@ -1251,7 +1250,6 @@ theorem K'.elim_aux (a b c d) : K'.elim a b c d K'.aux = c := rfl

theorem K'.elim_stack (a b c d) : K'.elim a b c d K'.stack = d := rfl

attribute [eqns K'.elim_main K'.elim_rev K'.elim_aux K'.elim_stack] K'.elim
attribute [simp] K'.elim

@[simp]
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/MeasureTheory/Decomposition/RadonNikodym.lean
Original file line number Diff line number Diff line change
Expand Up @@ -409,7 +409,7 @@ theorem withDensityᵥ_rnDeriv_eq (s : SignedMeasure α) (μ : Measure α) [Sigm
rw [absolutelyContinuous_ennreal_iff, (_ : μ.toENNRealVectorMeasure.ennrealToMeasure = μ),
totalVariation_absolutelyContinuous_iff] at h
· ext1 i hi
rw [withDensityᵥ_apply (integrable_rnDeriv _ _) hi, rnDeriv, integral_sub,
rw [withDensityᵥ_apply (integrable_rnDeriv _ _) hi, rnDeriv_def, integral_sub,
set_integral_toReal_rnDeriv h.1 i, set_integral_toReal_rnDeriv h.2 i]
· conv_rhs => rw [← s.toSignedMeasure_toJordanDecomposition]
erw [VectorMeasure.sub_apply]
Expand Down
9 changes: 3 additions & 6 deletions Mathlib/MeasureTheory/Decomposition/SignedLebesgue.lean
Original file line number Diff line number Diff line change
Expand Up @@ -178,20 +178,17 @@ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x =>
(s.toJordanDecomposition.negPart.rnDeriv μ x).toReal
#align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv

-- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`.

-- The generated equation theorem is the form of `rnDeriv s μ x = ...`.
theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x =>
(s.toJordanDecomposition.posPart.rnDeriv μ x).toReal -
(s.toJordanDecomposition.negPart.rnDeriv μ x).toReal :=
rfl

attribute [eqns rnDeriv_def] rnDeriv

variable {s t : SignedMeasure α}

@[measurability]
theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by
rw [rnDeriv]
rw [rnDeriv_def]
measurability
#align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv

Expand All @@ -213,7 +210,7 @@ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ]
s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by
conv_rhs =>
rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure]
rw [singularPart, rnDeriv,
rw [singularPart, rnDeriv_def,
withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _)
(integrable_toReal_of_lintegral_ne_top _ _),
withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg,
Expand Down
8 changes: 0 additions & 8 deletions Mathlib/MeasureTheory/Function/L1Space.lean
Original file line number Diff line number Diff line change
Expand Up @@ -110,8 +110,6 @@ theorem hasFiniteIntegral_def {_ : MeasurableSpace α} (f : α → β) (μ : Mea
HasFiniteIntegral f μ ↔ ((∫⁻ a, ‖f a‖₊ ∂μ) < ∞) :=
Iff.rfl

attribute [eqns hasFiniteIntegral_def] HasFiniteIntegral

theorem hasFiniteIntegral_iff_norm (f : α → β) :
HasFiniteIntegral f μ ↔ (∫⁻ a, ENNReal.ofReal ‖f a‖ ∂μ) < ∞ := by
simp only [HasFiniteIntegral, ofReal_norm_eq_coe_nnnorm]
Expand Down Expand Up @@ -440,12 +438,6 @@ def Integrable {α} {_ : MeasurableSpace α} (f : α → β) (μ : Measure α :=
AEStronglyMeasurable f μ ∧ HasFiniteIntegral f μ
#align measure_theory.integrable MeasureTheory.Integrable

theorem integrable_def {α} {_ : MeasurableSpace α} (f : α → β) (μ : Measure α) :
Integrable f μ ↔ (AEStronglyMeasurable f μ ∧ HasFiniteIntegral f μ) :=
Iff.rfl

attribute [eqns integrable_def] Integrable

theorem memℒp_one_iff_integrable {f : α → β} : Memℒp f 1 μ ↔ Integrable f μ := by
simp_rw [Integrable, HasFiniteIntegral, Memℒp, snorm_one_eq_lintegral_nnnorm]
#align measure_theory.mem_ℒp_one_iff_integrable MeasureTheory.memℒp_one_iff_integrable
Expand Down
7 changes: 0 additions & 7 deletions Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -109,13 +109,6 @@ def Memℒp {α} {_ : MeasurableSpace α} (f : α → E) (p : ℝ≥0∞)
AEStronglyMeasurable f μ ∧ snorm f p μ < ∞
#align measure_theory.mem_ℒp MeasureTheory.Memℒp

-- Porting note (#11215): TODO Delete this when leanprover/lean4#2243 is fixed.
theorem memℒp_def {α} {_ : MeasurableSpace α} (f : α → E) (p : ℝ≥0∞) (μ : Measure α) :
Memℒp f p μ ↔ (AEStronglyMeasurable f μ ∧ snorm f p μ < ∞) :=
Iff.rfl

attribute [eqns memℒp_def] Memℒp

theorem Memℒp.aestronglyMeasurable {f : α → E} {p : ℝ≥0∞} (h : Memℒp f p μ) :
AEStronglyMeasurable f μ :=
h.1
Expand Down
7 changes: 0 additions & 7 deletions Mathlib/MeasureTheory/Integral/IntegrableOn.lean
Original file line number Diff line number Diff line change
Expand Up @@ -91,13 +91,6 @@ def IntegrableOn (f : α → E) (s : Set α) (μ : Measure α := by volume_tac)
Integrable f (μ.restrict s)
#align measure_theory.integrable_on MeasureTheory.IntegrableOn

-- Porting note (#11215): TODO Delete this when leanprover/lean4#2243 is fixed.
theorem integrableOn_def (f : α → E) (s : Set α) (μ : Measure α) :
IntegrableOn f s μ ↔ Integrable f (μ.restrict s) :=
Iff.rfl

attribute [eqns integrableOn_def] IntegrableOn

theorem IntegrableOn.integrable (h : IntegrableOn f s μ) : Integrable f (μ.restrict s) :=
h
#align measure_theory.integrable_on.integrable MeasureTheory.IntegrableOn.integrable
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/NumberTheory/LSeries/AbstractFuncEq.lean
Original file line number Diff line number Diff line change
Expand Up @@ -360,10 +360,10 @@ lemma f_modif_aux2 {s : ℂ} (hs : P.k < re s) :
- P.ε • (∫ (x : ℝ) in Ioc 0 1, (x : ℂ) ^ (s - P.k - 1)) • P.g₀ := by
rw [integral_sub, integral_smul, integral_smul_const, integral_smul_const]
· apply Integrable.smul_const
rw [← integrableOn_def, ← intervalIntegrable_iff_integrableOn_Ioc_of_le zero_le_one]
rw [← IntegrableOn, ← intervalIntegrable_iff_integrableOn_Ioc_of_le zero_le_one]
exact intervalIntegral.intervalIntegrable_cpow' h_re1
· refine (Integrable.smul_const ?_ _).smul _
rw [← integrableOn_def, ← intervalIntegrable_iff_integrableOn_Ioc_of_le zero_le_one]
rw [← IntegrableOn, ← intervalIntegrable_iff_integrableOn_Ioc_of_le zero_le_one]
exact intervalIntegral.intervalIntegrable_cpow' h_re2
_ = _ := by simp_rw [← intervalIntegral.integral_of_le zero_le_one,
integral_cpow (Or.inl h_re1), integral_cpow (Or.inl h_re2), ofReal_zero, ofReal_one,
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Probability/Distributions/Exponential.lean
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,7 @@ lemma lintegral_exponentialPDF_eq_antiDeriv {r : ℝ} (hr : 0 < r) (x : ℝ) :
· simp only [neg_mul, one_mul]
exact fun _ _ ↦ HasDerivAt.hasDerivWithinAt hasDerivAt_neg_exp_mul_exp
· apply Integrable.aestronglyMeasurable (Integrable.const_mul _ _)
rw [← integrableOn_def, integrableOn_Icc_iff_integrableOn_Ioc]
rw [← IntegrableOn, integrableOn_Icc_iff_integrableOn_Ioc]
exact exp_neg_integrableOn_Ioc hr
· refine ne_of_lt (IntegrableOn.set_lintegral_lt_top ?_)
rw [integrableOn_Icc_iff_integrableOn_Ioc]
Expand Down

0 comments on commit c28365c

Please sign in to comment.