-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ee54163
commit b62788e
Showing
3 changed files
with
35 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -17,7 +17,7 @@ | |
|
||
% set document information | ||
\title{Physik} | ||
\author{Darius Peters, Steven Salloum} % optional, delete if unchanged | ||
\author{Darius Peters, Steven Salloum, Timotheus Lass} % optional, delete if unchanged | ||
\myemail{[email protected]} % optional, delete if unchanged | ||
\mywebsite{www.latex4ei.de} % optional, delete if unchanged | ||
|
||
|
@@ -251,7 +251,10 @@ \subsection{Schwebung} | |
Tritt auf bei $f_1\approx f_2$ ($f_1 \neq f_2$)\\ | ||
$f_S=|f_1-f_2| \qquad f_R= \frac{f_1+f_2}{2}$\\ | ||
$y(t)=\underbrace{2\hat{y}\cos(2\pi \cdot \frac{f_1-f_2}{2}\cdot t)}_{\text{Amplitudenfaktor}} \cdot \underbrace{\sin(2\pi \cdot \frac{f_1+f_2}{2}\cdot t)}_{f_R} $\\ | ||
\includegraphics[width=.9\columnwidth]{Schwebung_crop.pdf} | ||
\begin{center} | ||
\includegraphics[width=.8\columnwidth]{schwebung_neu.png}\\ | ||
\textcolor{darkgray}{Die blaue Kurve ist die hochfrequente Schwingung (Ton), und die roten und grauen Kurven repräsentieren die Hüllkurven der Schwebung (Lautstärke).} | ||
\end{center} | ||
\begin{minipage}{\columnwidth} | ||
\subsection{Gekoppelte Wellen} | ||
\begin{enumerate} | ||
|
@@ -479,8 +482,8 @@ \section{Thermodynamik} | |
\subsection{Hauptsätze der Thermodynamik} | ||
|
||
\begin{itemize} | ||
\item[0.] Zwei Körper im thermischen Gleichgewicht zu einem dritten\\ $\rightarrow$ Alle stehen untereinander im Gleichgewicht\\ | ||
\item[1.] $\Delta U = \Delta Q + \Delta W \rightarrow $ Es gibt kein Perpetuum mobile erster Art - Maschine mit $>$100\% Wirkungsgrad\\ \\ | ||
\item[0.] Zwei Körper im thermischen Gleichgewicht zu einem dritten\\ $\rightarrow$ Alle stehen untereinander im Gleichgewicht\\ | ||
\item[1.] $\Delta U = \Delta Q + \Delta W \rightarrow $ Es gibt kein Perpetuum mobile erster Art - Maschine mit $>$100\% Wirkungsgrad\\ | ||
$\textbf{Verschiedene Möglichkeiten für Zustandsänderung:}$ | ||
%TODO BESSERE LISTE %TODO | ||
\begin{sectionbox} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
|
||
%Code von Timotheus Lass für und mit Darius Peters | ||
t=0:0.0001:6.5*pi; %Zeitvektor t | ||
f1=5; %Frequenz 1 | ||
f2=5.2; %Frquenz 2 | ||
%Signal und Plot schwarze Kurve | ||
y1=cos(2*pi*((f1-f2)/2)*t); | ||
p1=plot(t,y1,'Color',[0 0 0],'LineWidth',1.2); | ||
hold on | ||
%Achsenbeschriftung und -bearbeitung | ||
xlabel('t'); | ||
ylabel('y(t)'); | ||
ax=gca; | ||
xticks(-1000); | ||
yticks(-1000); | ||
ax.XAxisLocation='origin'; | ||
%annotation('arrow',[0.1, 0.9],[0.515, 0.515]); | ||
xlim([0 6.5*pi]); | ||
ylim([-2 2]); | ||
%Signal und Plot rote Kurve | ||
y2=-cos(2*pi*((f1-f2)/2)*t); | ||
p2=plot(t,y2,'r','LineWidth',1.2); | ||
%Signal und Plot blaue Kurve | ||
y3=cos(2*pi*((f1-f2)/2)*t).*sin(2*pi*((f1+f2)/6)*t); | ||
p3=plot(t,y3,'b'); | ||
legend('Hüllkurve','Hüllkurve','Ton'); | ||
exportgraphics(gcf, 'schwebung_neu.png', 'ContentType', 'image', 'Resolution', 600); | ||
hold off; |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.