Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement NucliaDB vector store #10236

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
Expand Down Expand Up @@ -93,8 +93,22 @@
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
},
"orig_nbformat": 4
},
Expand Down
151 changes: 151 additions & 0 deletions docs/extras/integrations/vectorstores/nucliadb_vectorstore.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# NucliaDB vector store\n",
"\n",
"You can use a local NucliaDB instance or use [Nuclia Cloud](https://nuclia.cloud).\n",
"\n",
"When using a local instance, you need a Nuclia Understanding API key, so your texts are properly vectorized and indexed. You can get a key by creating a free account at [https://nuclia.cloud](https://nuclia.cloud), and then [create a NUA key](https://docs.nuclia.dev/docs/docs/using/understanding/intro)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#!pip install nuclia"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Usage with nuclia.cloud"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "nuclia python package not found. Please install it with `pip install nuclia`.",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"File \u001b[0;32m~/dev/osprojects/langchain/libs/langchain/langchain/vectorstores/nucliadb.py:39\u001b[0m, in \u001b[0;36mNucliaDB.__init__\u001b[0;34m(self, knowledge_box, local, api_key, backend)\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m---> 39\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mnuclia\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39msdk\u001b[39;00m \u001b[39mimport\u001b[39;00m NucliaAuth\n\u001b[1;32m 40\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mImportError\u001b[39;00m:\n",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'nuclia'",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[1], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mlangchain\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mvectorstores\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mnucliadb\u001b[39;00m \u001b[39mimport\u001b[39;00m NucliaDB\n\u001b[1;32m 2\u001b[0m API_KEY \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mYOUR_API_KEY\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m----> 4\u001b[0m ndb \u001b[39m=\u001b[39m NucliaDB(knowledge_box\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mYOUR_KB_ID\u001b[39;49m\u001b[39m\"\u001b[39;49m, local\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m, api_key\u001b[39m=\u001b[39;49mAPI_KEY)\n",
"File \u001b[0;32m~/dev/osprojects/langchain/libs/langchain/langchain/vectorstores/nucliadb.py:41\u001b[0m, in \u001b[0;36mNucliaDB.__init__\u001b[0;34m(self, knowledge_box, local, api_key, backend)\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mnuclia\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39msdk\u001b[39;00m \u001b[39mimport\u001b[39;00m NucliaAuth\n\u001b[1;32m 40\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mImportError\u001b[39;00m:\n\u001b[0;32m---> 41\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 42\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mnuclia python package not found. \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 43\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mPlease install it with `pip install nuclia`.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 44\u001b[0m )\n\u001b[1;32m 45\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_config[\u001b[39m\"\u001b[39m\u001b[39mLOCAL\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m local\n\u001b[1;32m 46\u001b[0m zone \u001b[39m=\u001b[39m os\u001b[39m.\u001b[39menviron\u001b[39m.\u001b[39mget(\u001b[39m\"\u001b[39m\u001b[39mNUCLIA_ZONE\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39meurope-1\u001b[39m\u001b[39m\"\u001b[39m)\n",
"\u001b[0;31mValueError\u001b[0m: nuclia python package not found. Please install it with `pip install nuclia`."
]
}
],
"source": [
"from langchain.vectorstores.nucliadb import NucliaDB\n",
"API_KEY = \"YOUR_API_KEY\"\n",
"\n",
"ndb = NucliaDB(knowledge_box=\"YOUR_KB_ID\", local=False, api_key=API_KEY)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Usage with a local instance\n",
"\n",
"Note: By default `backend` is set to `http://localhost:8080`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores.nucliadb import NucliaDB\n",
"\n",
"ndb = NucliaDB(knowledge_box=\"YOUR_KB_ID\", local=True, backend=\"http://my-local-server\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Add and delete texts to your Knowledge Box"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ids = ndb.add_texts([\"This is a new test\", \"This is a second test\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ndb.delete(ids=ids)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Search in your Knowledge Box"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"results = ndb.similarity_search(\"Who was inspired by Ada Lovelace?\")\n",
"print(res.page_content)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
159 changes: 159 additions & 0 deletions libs/langchain/langchain/vectorstores/nucliadb.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
import os
from typing import Any, Dict, Iterable, List, Optional, Type

from langchain.embeddings.base import Embeddings
from langchain.schema.document import Document
from langchain.vectorstores.base import VST, VectorStore

FIELD_TYPES = {
"f": "files",
"t": "texts",
"l": "links",
}


class NucliaDB(VectorStore):
"""NucliaDB vector store."""

_config: Dict[str, Any] = {}

def __init__(
self,
knowledge_box: str,
local: bool,
api_key: Optional[str] = None,
backend: Optional[str] = None,
) -> None:
"""Initialize the NucliaDB client.

Args:
knowledge_box: the Knowledge Box id.
local: Whether to use a local NucliaDB instance or Nuclia Cloud
api_key: A contributor API key for the kb (needed when local is False)
backend: The backend url to use when local is True, defaults to
http://localhost:8080
"""
try:
from nuclia.sdk import NucliaAuth
except ImportError:
raise ValueError(
"nuclia python package not found. "
"Please install it with `pip install nuclia`."
)
self._config["LOCAL"] = local
zone = os.environ.get("NUCLIA_ZONE", "europe-1")
self._kb = knowledge_box
if local:
if not backend:
backend = "http://localhost:8080"
self._config["BACKEND"] = f"{backend}/api/v1"
self._config["TOKEN"] = None
NucliaAuth().nucliadb(url=backend)
NucliaAuth().kb(url=self.kb_url, interactive=False)
else:
self._config["BACKEND"] = f"https://{zone}.nuclia.cloud/api/v1"
self._config["TOKEN"] = api_key
NucliaAuth().kb(
url=self.kb_url, token=self._config["TOKEN"], interactive=False
)

@property
def is_local(self) -> str:
return self._config["LOCAL"]

@property
def kb_url(self) -> str:
return f"{self._config['BACKEND']}/kb/{self._kb}"

def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Upload texts to NucliaDB"""
ids = []
from nuclia.sdk import NucliaResource

factory = NucliaResource()
for i, text in enumerate(texts):
extra: Dict[str, Any] = {"metadata": ""}
if metadatas:
extra = {"metadata": metadatas[i]}
id = factory.create(
texts={"text": {"body": text}},
extra=extra,
url=self.kb_url,
api_key=self._config["TOKEN"],
)
ids.append(id)
return ids

def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]:
if not ids:
return None
from nuclia.sdk import NucliaResource

factory = NucliaResource()
results: List[bool] = []
for id in ids:
try:
factory.delete(rid=id, url=self.kb_url, api_key=self._config["TOKEN"])
results.append(True)
except ValueError:
results.append(False)
return all(results)

def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
from nuclia.sdk import NucliaSearch
from nucliadb_models.search import FindRequest, ResourceProperties

request = FindRequest(
query=query,
page_size=k,
show=[ResourceProperties.VALUES, ResourceProperties.EXTRA],
)
search = NucliaSearch()
results = search.find(
query=request, url=self.kb_url, api_key=self._config["TOKEN"]
)
paragraphs = []
for resource in results.resources.values():
for field in resource.fields.values():
for paragraph_id, paragraph in field.paragraphs.items():
info = paragraph_id.split("/")
field_type = FIELD_TYPES.get(info[1], None)
field_id = info[2]
if not field_type:
continue
value = getattr(resource.data, field_type, {}).get(field_id, None)
paragraphs.append(
{
"text": paragraph.text,
"metadata": {
"extra": getattr(
getattr(resource, "extra", {}), "metadata", None
),
"value": value,
},
"order": paragraph.order,
}
)
sorted_paragraphs = sorted(paragraphs, key=lambda x: x["order"])
return [
Document(page_content=paragraph["text"], metadata=paragraph["metadata"])
for paragraph in sorted_paragraphs
]

@classmethod
def from_texts(
cls: Type[VST],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> VST:
"""Return VectorStore initialized from texts and embeddings."""
raise NotImplementedError
Loading