-
Notifications
You must be signed in to change notification settings - Fork 15.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
community: update Memgraph integration (#27017)
**Description:** - **Memgraph** no longer relies on `Neo4jGraphStore` but **implements `GraphStore`**, just like other graph databases. - **Memgraph** no longer relies on `GraphQAChain`, but implements `MemgraphQAChain`, just like other graph databases. - The refresh schema procedure has been updated to try using `SHOW SCHEMA INFO`. The fallback uses Cypher queries (a combination of schema and Cypher) → **LangChain integration no longer relies on MAGE library**. - The **schema structure** has been reformatted. Regardless of the procedures used to get schema, schema structure is the same. - The `add_graph_documents()` method has been implemented. It transforms `GraphDocument` into Cypher queries and creates a graph in Memgraph. It implements the ability to use `baseEntityLabel` to improve speed (`baseEntityLabel` has an index on the `id` property). It also implements the ability to include sources by creating a `MENTIONS` relationship to the source document. - Jupyter Notebook for Memgraph has been updated. - **Issue:** / - **Dependencies:** / - **Twitter handle:** supe_katarina (DX Engineer @ Memgraph) Closes #25606
- Loading branch information
1 parent
5c6e2cb
commit aba2711
Showing
9 changed files
with
1,476 additions
and
452 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
316 changes: 316 additions & 0 deletions
316
libs/community/langchain_community/chains/graph_qa/memgraph.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,316 @@ | ||
"""Question answering over a graph.""" | ||
|
||
from __future__ import annotations | ||
|
||
import re | ||
from typing import Any, Dict, List, Optional, Union | ||
|
||
from langchain.chains.base import Chain | ||
from langchain_core.callbacks import CallbackManagerForChainRun | ||
from langchain_core.language_models import BaseLanguageModel | ||
from langchain_core.messages import ( | ||
AIMessage, | ||
BaseMessage, | ||
SystemMessage, | ||
ToolMessage, | ||
) | ||
from langchain_core.output_parsers import StrOutputParser | ||
from langchain_core.prompts import ( | ||
BasePromptTemplate, | ||
ChatPromptTemplate, | ||
HumanMessagePromptTemplate, | ||
MessagesPlaceholder, | ||
) | ||
from langchain_core.runnables import Runnable | ||
from pydantic import Field | ||
|
||
from langchain_community.chains.graph_qa.prompts import ( | ||
MEMGRAPH_GENERATION_PROMPT, | ||
MEMGRAPH_QA_PROMPT, | ||
) | ||
from langchain_community.graphs.memgraph_graph import MemgraphGraph | ||
|
||
INTERMEDIATE_STEPS_KEY = "intermediate_steps" | ||
|
||
FUNCTION_RESPONSE_SYSTEM = """You are an assistant that helps to form nice and human | ||
understandable answers based on the provided information from tools. | ||
Do not add any other information that wasn't present in the tools, and use | ||
very concise style in interpreting results! | ||
""" | ||
|
||
|
||
def extract_cypher(text: str) -> str: | ||
"""Extract Cypher code from a text. | ||
Args: | ||
text: Text to extract Cypher code from. | ||
Returns: | ||
Cypher code extracted from the text. | ||
""" | ||
# The pattern to find Cypher code enclosed in triple backticks | ||
pattern = r"```(.*?)```" | ||
|
||
# Find all matches in the input text | ||
matches = re.findall(pattern, text, re.DOTALL) | ||
|
||
return matches[0] if matches else text | ||
|
||
|
||
def get_function_response( | ||
question: str, context: List[Dict[str, Any]] | ||
) -> List[BaseMessage]: | ||
TOOL_ID = "call_H7fABDuzEau48T10Qn0Lsh0D" | ||
messages = [ | ||
AIMessage( | ||
content="", | ||
additional_kwargs={ | ||
"tool_calls": [ | ||
{ | ||
"id": TOOL_ID, | ||
"function": { | ||
"arguments": '{"question":"' + question + '"}', | ||
"name": "GetInformation", | ||
}, | ||
"type": "function", | ||
} | ||
] | ||
}, | ||
), | ||
ToolMessage(content=str(context), tool_call_id=TOOL_ID), | ||
] | ||
return messages | ||
|
||
|
||
class MemgraphQAChain(Chain): | ||
"""Chain for question-answering against a graph by generating Cypher statements. | ||
*Security note*: Make sure that the database connection uses credentials | ||
that are narrowly-scoped to only include necessary permissions. | ||
Failure to do so may result in data corruption or loss, since the calling | ||
code may attempt commands that would result in deletion, mutation | ||
of data if appropriately prompted or reading sensitive data if such | ||
data is present in the database. | ||
The best way to guard against such negative outcomes is to (as appropriate) | ||
limit the permissions granted to the credentials used with this tool. | ||
See https://python.langchain.com/docs/security for more information. | ||
""" | ||
|
||
graph: MemgraphGraph = Field(exclude=True) | ||
cypher_generation_chain: Runnable | ||
qa_chain: Runnable | ||
graph_schema: str | ||
input_key: str = "query" #: :meta private: | ||
output_key: str = "result" #: :meta private: | ||
top_k: int = 10 | ||
"""Number of results to return from the query""" | ||
return_intermediate_steps: bool = False | ||
"""Whether or not to return the intermediate steps along with the final answer.""" | ||
return_direct: bool = False | ||
"""Optional cypher validation tool""" | ||
use_function_response: bool = False | ||
"""Whether to wrap the database context as tool/function response""" | ||
allow_dangerous_requests: bool = False | ||
"""Forced user opt-in to acknowledge that the chain can make dangerous requests. | ||
*Security note*: Make sure that the database connection uses credentials | ||
that are narrowly-scoped to only include necessary permissions. | ||
Failure to do so may result in data corruption or loss, since the calling | ||
code may attempt commands that would result in deletion, mutation | ||
of data if appropriately prompted or reading sensitive data if such | ||
data is present in the database. | ||
The best way to guard against such negative outcomes is to (as appropriate) | ||
limit the permissions granted to the credentials used with this tool. | ||
See https://python.langchain.com/docs/security for more information. | ||
""" | ||
|
||
def __init__(self, **kwargs: Any) -> None: | ||
"""Initialize the chain.""" | ||
super().__init__(**kwargs) | ||
if self.allow_dangerous_requests is not True: | ||
raise ValueError( | ||
"In order to use this chain, you must acknowledge that it can make " | ||
"dangerous requests by setting `allow_dangerous_requests` to `True`." | ||
"You must narrowly scope the permissions of the database connection " | ||
"to only include necessary permissions. Failure to do so may result " | ||
"in data corruption or loss or reading sensitive data if such data is " | ||
"present in the database." | ||
"Only use this chain if you understand the risks and have taken the " | ||
"necessary precautions. " | ||
"See https://python.langchain.com/docs/security for more information." | ||
) | ||
|
||
@property | ||
def input_keys(self) -> List[str]: | ||
"""Return the input keys. | ||
:meta private: | ||
""" | ||
return [self.input_key] | ||
|
||
@property | ||
def output_keys(self) -> List[str]: | ||
"""Return the output keys. | ||
:meta private: | ||
""" | ||
_output_keys = [self.output_key] | ||
return _output_keys | ||
|
||
@property | ||
def _chain_type(self) -> str: | ||
return "graph_cypher_chain" | ||
|
||
@classmethod | ||
def from_llm( | ||
cls, | ||
llm: Optional[BaseLanguageModel] = None, | ||
*, | ||
qa_prompt: Optional[BasePromptTemplate] = None, | ||
cypher_prompt: Optional[BasePromptTemplate] = None, | ||
cypher_llm: Optional[BaseLanguageModel] = None, | ||
qa_llm: Optional[Union[BaseLanguageModel, Any]] = None, | ||
qa_llm_kwargs: Optional[Dict[str, Any]] = None, | ||
cypher_llm_kwargs: Optional[Dict[str, Any]] = None, | ||
use_function_response: bool = False, | ||
function_response_system: str = FUNCTION_RESPONSE_SYSTEM, | ||
**kwargs: Any, | ||
) -> MemgraphQAChain: | ||
"""Initialize from LLM.""" | ||
|
||
if not cypher_llm and not llm: | ||
raise ValueError("Either `llm` or `cypher_llm` parameters must be provided") | ||
if not qa_llm and not llm: | ||
raise ValueError("Either `llm` or `qa_llm` parameters must be provided") | ||
if cypher_llm and qa_llm and llm: | ||
raise ValueError( | ||
"You can specify up to two of 'cypher_llm', 'qa_llm'" | ||
", and 'llm', but not all three simultaneously." | ||
) | ||
if cypher_prompt and cypher_llm_kwargs: | ||
raise ValueError( | ||
"Specifying cypher_prompt and cypher_llm_kwargs together is" | ||
" not allowed. Please pass prompt via cypher_llm_kwargs." | ||
) | ||
if qa_prompt and qa_llm_kwargs: | ||
raise ValueError( | ||
"Specifying qa_prompt and qa_llm_kwargs together is" | ||
" not allowed. Please pass prompt via qa_llm_kwargs." | ||
) | ||
use_qa_llm_kwargs = qa_llm_kwargs if qa_llm_kwargs is not None else {} | ||
use_cypher_llm_kwargs = ( | ||
cypher_llm_kwargs if cypher_llm_kwargs is not None else {} | ||
) | ||
if "prompt" not in use_qa_llm_kwargs: | ||
use_qa_llm_kwargs["prompt"] = ( | ||
qa_prompt if qa_prompt is not None else MEMGRAPH_QA_PROMPT | ||
) | ||
if "prompt" not in use_cypher_llm_kwargs: | ||
use_cypher_llm_kwargs["prompt"] = ( | ||
cypher_prompt | ||
if cypher_prompt is not None | ||
else MEMGRAPH_GENERATION_PROMPT | ||
) | ||
|
||
qa_llm = qa_llm or llm | ||
if use_function_response: | ||
try: | ||
qa_llm.bind_tools({}) # type: ignore[union-attr] | ||
response_prompt = ChatPromptTemplate.from_messages( | ||
[ | ||
SystemMessage(content=function_response_system), | ||
HumanMessagePromptTemplate.from_template("{question}"), | ||
MessagesPlaceholder(variable_name="function_response"), | ||
] | ||
) | ||
qa_chain = response_prompt | qa_llm | StrOutputParser() # type: ignore | ||
except (NotImplementedError, AttributeError): | ||
raise ValueError("Provided LLM does not support native tools/functions") | ||
else: | ||
qa_chain = use_qa_llm_kwargs["prompt"] | qa_llm | StrOutputParser() # type: ignore | ||
|
||
prompt = use_cypher_llm_kwargs["prompt"] | ||
llm_to_use = cypher_llm if cypher_llm is not None else llm | ||
|
||
if prompt is not None and llm_to_use is not None: | ||
cypher_generation_chain = prompt | llm_to_use | StrOutputParser() # type: ignore[arg-type] | ||
else: | ||
raise ValueError( | ||
"Missing required components for the cypher generation chain: " | ||
"'prompt' or 'llm'" | ||
) | ||
|
||
graph_schema = kwargs["graph"].get_schema | ||
|
||
return cls( | ||
graph_schema=graph_schema, | ||
qa_chain=qa_chain, | ||
cypher_generation_chain=cypher_generation_chain, | ||
use_function_response=use_function_response, | ||
**kwargs, | ||
) | ||
|
||
def _call( | ||
self, | ||
inputs: Dict[str, Any], | ||
run_manager: Optional[CallbackManagerForChainRun] = None, | ||
) -> Dict[str, Any]: | ||
"""Generate Cypher statement, use it to look up in db and answer question.""" | ||
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() | ||
callbacks = _run_manager.get_child() | ||
question = inputs[self.input_key] | ||
args = { | ||
"question": question, | ||
"schema": self.graph_schema, | ||
} | ||
args.update(inputs) | ||
|
||
intermediate_steps: List = [] | ||
|
||
generated_cypher = self.cypher_generation_chain.invoke( | ||
args, callbacks=callbacks | ||
) | ||
# Extract Cypher code if it is wrapped in backticks | ||
generated_cypher = extract_cypher(generated_cypher) | ||
|
||
_run_manager.on_text("Generated Cypher:", end="\n", verbose=self.verbose) | ||
_run_manager.on_text( | ||
generated_cypher, color="green", end="\n", verbose=self.verbose | ||
) | ||
|
||
intermediate_steps.append({"query": generated_cypher}) | ||
|
||
# Retrieve and limit the number of results | ||
# Generated Cypher be null if query corrector identifies invalid schema | ||
if generated_cypher: | ||
context = self.graph.query(generated_cypher)[: self.top_k] | ||
else: | ||
context = [] | ||
|
||
if self.return_direct: | ||
result = context | ||
else: | ||
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose) | ||
_run_manager.on_text( | ||
str(context), color="green", end="\n", verbose=self.verbose | ||
) | ||
|
||
intermediate_steps.append({"context": context}) | ||
if self.use_function_response: | ||
function_response = get_function_response(question, context) | ||
result = self.qa_chain.invoke( # type: ignore | ||
{"question": question, "function_response": function_response}, | ||
) | ||
else: | ||
result = self.qa_chain.invoke( # type: ignore | ||
{"question": question, "context": context}, | ||
callbacks=callbacks, | ||
) | ||
|
||
chain_result: Dict[str, Any] = {"result": result} | ||
if self.return_intermediate_steps: | ||
chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps | ||
|
||
return chain_result |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.