Skip to content

Commit

Permalink
community[minor]: Dappier chat model integration (#19370)
Browse files Browse the repository at this point in the history
**Description:** 

This PR adds [Dappier](https://dappier.com/) for the chat model. It
supports generate, async generate, and batch functionalities. We added
unit and integration tests as well as a notebook with more details about
our chat model.


**Dependencies:** 
    No extra dependencies are needed.
  • Loading branch information
IgorMunizS authored Mar 25, 2024
1 parent 64e1df3 commit 743f888
Show file tree
Hide file tree
Showing 4 changed files with 408 additions and 0 deletions.
155 changes: 155 additions & 0 deletions docs/docs/integrations/chat/dappier.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Dappier AI"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Dappier: Powering AI with Dynamic, Real-Time Data Models**\n",
"\n",
"Dappier offers a cutting-edge platform that grants developers immediate access to a wide array of real-time data models spanning news, entertainment, finance, market data, weather, and beyond. With our pre-trained data models, you can supercharge your AI applications, ensuring they deliver precise, up-to-date responses and minimize inaccuracies.\n",
"\n",
"Dappier data models help you build next-gen LLM apps with trusted, up-to-date content from the world's leading brands. Unleash your creativity and enhance any GPT App or AI workflow with actionable, proprietary, data through a simple API. Augment your AI with proprietary data from trusted sources is the best way to ensure factual, up-to-date, responses with fewer hallucinations no matter the question.\n",
"\n",
"For Developers, By Developers\n",
"Designed with developers in mind, Dappier simplifies the journey from data integration to monetization, providing clear, straightforward paths to deploy and earn from your AI models. Experience the future of monetization infrastructure for the new internet at **https://dappier.com/**."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This example goes over how to use LangChain to interact with Dappier AI models\n",
"\n",
"-----------------------------------------------------------------------------------"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To use one of our Dappier AI Data Models, you will need an API key. Please visit Dappier Platform (https://platform.dappier.com/) to log in and create an API key in your profile.\n",
"\n",
"\n",
"You can find more details on the API reference : https://docs.dappier.com/introduction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To work with our Dappier Chat Model you can pass the key directly through the parameter named dappier_api_key when initiating the class\n",
"or set as an environment variable.\n",
"\n",
"```bash\n",
"export DAPPIER_API_KEY=\"...\"\n",
"```\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models.dappier import ChatDappierAI\n",
"from langchain_core.messages import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"chat = ChatDappierAI(\n",
" dappier_endpoint=\"https://api.dappier.com/app/datamodelconversation\",\n",
" dappier_model=\"dm_01hpsxyfm2fwdt2zet9cg6fdxt\",\n",
" dappier_api_key=\"...\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Hey there! The Kansas City Chiefs won Super Bowl LVIII in 2024. They beat the San Francisco 49ers in overtime with a final score of 25-22. It was quite the game! 🏈')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [HumanMessage(content=\"Who won the super bowl in 2024?\")]\n",
"chat.invoke(messages)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='The Kansas City Chiefs won Super Bowl LVIII in 2024! 🏈')"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"await chat.ainvoke(messages)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
161 changes: 161 additions & 0 deletions libs/community/langchain_community/chat_models/dappier.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
from typing import Any, Dict, List, Optional, Union

from aiohttp import ClientSession
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
BaseChatModel,
)
from langchain_core.messages import (
AIMessage,
BaseMessage,
)
from langchain_core.outputs import ChatGeneration, ChatResult
from langchain_core.pydantic_v1 import Extra, Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env

from langchain_community.utilities.requests import Requests


def _format_dappier_messages(
messages: List[BaseMessage],
) -> List[Dict[str, Union[str, List[Union[str, Dict[Any, Any]]]]]]:
formatted_messages = []

for message in messages:
if message.type == "human":
formatted_messages.append({"role": "user", "content": message.content})
elif message.type == "system":
formatted_messages.append({"role": "system", "content": message.content})

return formatted_messages


class ChatDappierAI(BaseChatModel):
"""`Dappier` chat large language models.
`Dappier` is a platform enabling access to diverse, real-time data models.
Enhance your AI applications with Dappier's pre-trained, LLM-ready data models
and ensure accurate, current responses with reduced inaccuracies.
To use one of our Dappier AI Data Models, you will need an API key.
Please visit Dappier Platform (https://platform.dappier.com/) to log in
and create an API key in your profile.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatDappierAI
from langchain_core.messages import HumanMessage
# Initialize `ChatDappierAI` with the desired configuration
chat = ChatDappierAI(
dappier_endpoint="https://api.dappier.com/app/datamodel/dm_01hpsxyfm2fwdt2zet9cg6fdxt",
dappier_api_key="<YOUR_KEY>")
# Create a list of messages to interact with the model
messages = [HumanMessage(content="hello")]
# Invoke the model with the provided messages
chat.invoke(messages)
you can find more details here : https://docs.dappier.com/introduction"""

dappier_endpoint: str = "https://api.dappier.com/app/datamodelconversation"

dappier_model: str = "dm_01hpsxyfm2fwdt2zet9cg6fdxt"

dappier_api_key: Optional[SecretStr] = Field(None, description="Dappier API Token")

class Config:
"""Configuration for this pydantic object."""

extra = Extra.forbid

@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key exists in environment."""
values["dappier_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "dappier_api_key", "DAPPIER_API_KEY")
)
return values

@staticmethod
def get_user_agent() -> str:
from langchain_community import __version__

return f"langchain/{__version__}"

@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "dappier-realtimesearch-chat"

@property
def _api_key(self) -> str:
if self.dappier_api_key:
return self.dappier_api_key.get_secret_value()
return ""

def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
url = f"{self.dappier_endpoint}"
headers = {
"Authorization": f"Bearer {self._api_key}",
"User-Agent": self.get_user_agent(),
}
user_query = _format_dappier_messages(messages=messages)
payload: Dict[str, Any] = {
"model": self.dappier_model,
"conversation": user_query,
}

request = Requests(headers=headers)
response = request.post(url=url, data=payload)
response.raise_for_status()

data = response.json()

message_response = data["message"]

return ChatResult(
generations=[ChatGeneration(message=AIMessage(content=message_response))]
)

async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
url = f"{self.dappier_endpoint}"
headers = {
"Authorization": f"Bearer {self._api_key}",
"User-Agent": self.get_user_agent(),
}
user_query = _format_dappier_messages(messages=messages)
payload: Dict[str, Any] = {
"model": self.dappier_model,
"conversation": user_query,
}

async with ClientSession() as session:
async with session.post(url, json=payload, headers=headers) as response:
response.raise_for_status()
data = await response.json()
message_response = data["message"]

return ChatResult(
generations=[
ChatGeneration(message=AIMessage(content=message_response))
]
)
58 changes: 58 additions & 0 deletions libs/community/tests/integration_tests/chat_models/test_dappier.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
from typing import List

import pytest
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.outputs import ChatGeneration, LLMResult

from langchain_community.chat_models.dappier import (
ChatDappierAI,
)


@pytest.mark.scheduled
def test_dappier_chat() -> None:
"""Test ChatDappierAI wrapper."""
chat = ChatDappierAI(
dappier_endpoint="https://api.dappier.com/app/datamodelconversation",
dappier_model="dm_01hpsxyfm2fwdt2zet9cg6fdxt",
)
message = HumanMessage(content="Who are you ?")
response = chat([message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)


@pytest.mark.scheduled
def test_dappier_generate() -> None:
"""Test generate method of Dappier AI."""
chat = ChatDappierAI(
dappier_endpoint="https://api.dappier.com/app/datamodelconversation",
dappier_model="dm_01hpsxyfm2fwdt2zet9cg6fdxt",
)
chat_messages: List[List[BaseMessage]] = [
[HumanMessage(content="Who won the last super bowl?")],
]
messages_copy = [messages.copy() for messages in chat_messages]
result: LLMResult = chat.generate(chat_messages)
assert isinstance(result, LLMResult)
for response in result.generations[0]:
assert isinstance(response, ChatGeneration)
assert isinstance(response.text, str)
assert response.text == response.message.content
assert chat_messages == messages_copy


@pytest.mark.scheduled
async def test_dappier_agenerate() -> None:
"""Test async generation."""
chat = ChatDappierAI(
dappier_endpoint="https://api.dappier.com/app/datamodelconversation",
dappier_model="dm_01hpsxyfm2fwdt2zet9cg6fdxt",
)
message = HumanMessage(content="Who won the last super bowl?")
result: LLMResult = await chat.agenerate([[message], [message]])
assert isinstance(result, LLMResult)
for response in result.generations[0]:
assert isinstance(response, ChatGeneration)
assert isinstance(response.text, str)
assert response.text == response.message.content
Loading

0 comments on commit 743f888

Please sign in to comment.