Skip to content

Commit

Permalink
Merge branch 'main' into perf/share_program_identifiers
Browse files Browse the repository at this point in the history
  • Loading branch information
Oppen authored Apr 20, 2023
2 parents 401d690 + a178759 commit 44bca19
Show file tree
Hide file tree
Showing 15 changed files with 896 additions and 16 deletions.
52 changes: 52 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,57 @@
* Breaking change: make all fields in `Program` and `SharedProgramData` `pub(crate)`, since we break by moving the field let's make it the last break for this struct
* Add `Program::get_identifier(&self, id: &str) -> &Identifier` to get a single identifier by name

* Implement hints on field_arithmetic lib[#985](https://github.com/lambdaclass/cairo-rs/pull/983)

`BuiltinHintProcessor` now supports the following hint:

```python
%{
from starkware.python.math_utils import is_quad_residue, sqrt

def split(num: int, num_bits_shift: int = 128, length: int = 3):
a = []
for _ in range(length):
a.append( num & ((1 << num_bits_shift) - 1) )
num = num >> num_bits_shift
return tuple(a)

def pack(z, num_bits_shift: int = 128) -> int:
limbs = (z.d0, z.d1, z.d2)
return sum(limb << (num_bits_shift * i) for i, limb in enumerate(limbs))


generator = pack(ids.generator)
x = pack(ids.x)
p = pack(ids.p)

success_x = is_quad_residue(x, p)
root_x = sqrt(x, p) if success_x else None

success_gx = is_quad_residue(generator*x, p)
root_gx = sqrt(generator*x, p) if success_gx else None

# Check that one is 0 and the other is 1
if x != 0:
assert success_x + success_gx ==1

# `None` means that no root was found, but we need to transform these into a felt no matter what
if root_x == None:
root_x = 0
if root_gx == None:
root_gx = 0
ids.success_x = int(success_x)
split_root_x = split(root_x)
split_root_gx = split(root_gx)
ids.sqrt_x.d0 = split_root_x[0]
ids.sqrt_x.d1 = split_root_x[1]
ids.sqrt_x.d2 = split_root_x[2]
ids.sqrt_gx.d0 = split_root_gx[0]
ids.sqrt_gx.d1 = split_root_gx[1]
ids.sqrt_gx.d2 = split_root_gx[2]
%}
```

* Add missing hint on uint256_improvements lib [#1016](https://github.com/lambdaclass/cairo-rs/pull/1016):

`BuiltinHintProcessor` now supports the following hint:
Expand Down Expand Up @@ -90,6 +141,7 @@
* The new version carries an 85% reduction in execution time for ECDSA signature verification

* BREAKING CHANGE: refactor `Program` to optimize `Program::clone` [#999](https://github.com/lambdaclass/cairo-rs/pull/999)

* Breaking change: many fields that were (unnecessarily) public become hidden by the refactor.

* BREAKING CHANGE: Add _builtin suffix to builtin names e.g.: output -> output_builtin [#1005](https://github.com/lambdaclass/cairo-rs/pull/1005)
Expand Down
55 changes: 54 additions & 1 deletion Cargo.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

4 changes: 3 additions & 1 deletion Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -32,9 +32,11 @@ hooks = []

[dependencies]
mimalloc = { version = "0.1.29", default-features = false, optional = true }
num-bigint = { version = "0.4", features = ["serde"], default-features = false }
num-bigint = { version = "0.4", features = ["serde", "rand"], default-features = false }
rand = { version = "0.8.3", features = ["small_rng"], default-features = false }
num-traits = { version = "0.2", default-features = false }
num-integer = { version = "0.1.45", default-features = false }
num-prime = {version = "0.4.3", features = ["big-int"], default-features = false }
serde = { version = "1.0", features = ["derive"], default-features = false }
serde_bytes = { version = "0.11.9", default-features = false, features = [
"alloc",
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
from starkware.cairo.common.cairo_builtins import BitwiseBuiltin
from starkware.cairo.common.bool import TRUE
from cairo_programs.uint384 import uint384_lib, Uint384, Uint384_expand
from cairo_programs.uint384_extension import uint384_extension_lib
from cairo_programs.field_arithmetic import field_arithmetic


func run_get_square{range_check_ptr, bitwise_ptr: BitwiseBuiltin*}(prime: Uint384, generator: Uint384, num: Uint384, iterations: felt) {
alloc_locals;
if (iterations == 0) {
return ();
}

let (square) = field_arithmetic.mul(num, num, prime);

let (success, root_1) = field_arithmetic.get_square_root(square, prime, generator);
assert success = 1;

// We calculate this before in order to prevent revoked range_check_ptr reference due to branching
let (root_2) = uint384_lib.sub(prime, root_1);
let (is_first_root) = uint384_lib.eq(root_1, num);

if ( is_first_root != TRUE) {
assert root_2 = num;
}

return run_get_square(prime, generator, square, iterations -1);
}

func main{range_check_ptr: felt, bitwise_ptr: BitwiseBuiltin*}() {
let p = Uint384(18446744069414584321, 0, 0); // Goldilocks Prime
let x = Uint384(5, 0, 0);
let g = Uint384(7, 0, 0);
run_get_square(p, g, x, 100);
return ();
}
171 changes: 171 additions & 0 deletions cairo_programs/field_arithmetic.cairo
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
// Code taken from https://github.com/NethermindEth/research-basic-Cairo-operations-big-integers/blob/fbf532651959f27037d70cd70ec6dbaf987f535c/lib/field_arithmetic.cairo
from starkware.cairo.common.bitwise import bitwise_and, bitwise_or, bitwise_xor
from starkware.cairo.common.cairo_builtins import BitwiseBuiltin
from starkware.cairo.common.math import assert_in_range, assert_le, assert_nn_le, assert_not_zero
from starkware.cairo.common.math_cmp import is_le
from starkware.cairo.common.pow import pow
from starkware.cairo.common.registers import get_ap, get_fp_and_pc
from cairo_programs.uint384 import uint384_lib, Uint384, Uint384_expand, SHIFT, HALF_SHIFT
from cairo_programs.uint384_extension import uint384_extension_lib, Uint768

// Functions for operating elements in a finite field F_p (i.e. modulo a prime p), with p of at most 384 bits
namespace field_arithmetic {
// Computes a * b modulo p
func mul{range_check_ptr}(a: Uint384, b: Uint384, p: Uint384) -> (res: Uint384) {
let (low: Uint384, high: Uint384) = uint384_lib.mul_d(a, b);
let full_mul_result: Uint768 = Uint768(low.d0, low.d1, low.d2, high.d0, high.d1, high.d2);
let (
quotient: Uint768, remainder: Uint384
) = uint384_extension_lib.unsigned_div_rem_uint768_by_uint384(full_mul_result, p);
return (remainder,);
}

// Computes a**2 modulo p
func square{range_check_ptr}(a: Uint384, p: Uint384) -> (res: Uint384) {
let (low: Uint384, high: Uint384) = uint384_lib.square_e(a);
let full_mul_result: Uint768 = Uint768(low.d0, low.d1, low.d2, high.d0, high.d1, high.d2);
let (
quotient: Uint768, remainder: Uint384
) = uint384_extension_lib.unsigned_div_rem_uint768_by_uint384(full_mul_result, p);
return (remainder,);
}

// Finds a square of x in F_p, i.e. x ≅ y**2 (mod p) for some y
// To do so, the following is done in a hint:
// 0. Assume x is not 0 mod p
// 1. Check if x is a square, if yes, find a square root r of it
// 2. If (and only if not), then gx *is* a square (for g a generator of F_p^*), so find a square root r of it
// 3. Check in Cairo that r**2 = x (mod p) or r**2 = gx (mod p), respectively
// NOTE: The function assumes that 0 <= x < p
func get_square_root{range_check_ptr, bitwise_ptr: BitwiseBuiltin*}(
x: Uint384, p: Uint384, generator: Uint384
) -> (success: felt, res: Uint384) {
alloc_locals;

// TODO: Create an equality function within field_arithmetic to avoid overflow bugs
let (is_zero) = uint384_lib.eq(x, Uint384(0, 0, 0));
if (is_zero == 1) {
return (1, Uint384(0, 0, 0));
}

local success_x: felt;
local sqrt_x: Uint384;
local sqrt_gx: Uint384;

// Compute square roots in a hint
%{
from starkware.python.math_utils import is_quad_residue, sqrt
def split(num: int, num_bits_shift: int = 128, length: int = 3):
a = []
for _ in range(length):
a.append( num & ((1 << num_bits_shift) - 1) )
num = num >> num_bits_shift
return tuple(a)
def pack(z, num_bits_shift: int = 128) -> int:
limbs = (z.d0, z.d1, z.d2)
return sum(limb << (num_bits_shift * i) for i, limb in enumerate(limbs))
generator = pack(ids.generator)
x = pack(ids.x)
p = pack(ids.p)
success_x = is_quad_residue(x, p)
root_x = sqrt(x, p) if success_x else None
success_gx = is_quad_residue(generator*x, p)
root_gx = sqrt(generator*x, p) if success_gx else None
# Check that one is 0 and the other is 1
if x != 0:
assert success_x + success_gx ==1
# `None` means that no root was found, but we need to transform these into a felt no matter what
if root_x == None:
root_x = 0
if root_gx == None:
root_gx = 0
ids.success_x = int(success_x)
split_root_x = split(root_x)
split_root_gx = split(root_gx)
ids.sqrt_x.d0 = split_root_x[0]
ids.sqrt_x.d1 = split_root_x[1]
ids.sqrt_x.d2 = split_root_x[2]
ids.sqrt_gx.d0 = split_root_gx[0]
ids.sqrt_gx.d1 = split_root_gx[1]
ids.sqrt_gx.d2 = split_root_gx[2]
%}

// Verify that the values computed in the hint are what they are supposed to be
let (gx: Uint384) = mul(generator, x, p);
if (success_x == 1) {
uint384_lib.check(sqrt_x);
let (is_valid) = uint384_lib.lt(sqrt_x, p);
assert is_valid = 1;
let (sqrt_x_squared: Uint384) = mul(sqrt_x, sqrt_x, p);
// Note these checks may fail if the input x does not satisfy 0<= x < p
// TODO: Create a equality function within field_arithmetic to avoid overflow bugs
let (check_x) = uint384_lib.eq(x, sqrt_x_squared);
assert check_x = 1;
return (1, sqrt_x);
} else {
// In this case success_gx = 1
uint384_lib.check(sqrt_gx);
let (is_valid) = uint384_lib.lt(sqrt_gx, p);
assert is_valid = 1;
let (sqrt_gx_squared: Uint384) = mul(sqrt_gx, sqrt_gx, p);
let (check_gx) = uint384_lib.eq(gx, sqrt_gx_squared);
assert check_gx = 1;
// No square roots were found
// Note that Uint384(0, 0, 0) is not a square root here, but something needs to be returned
return (0, Uint384(0, 0, 0));
}
}

}

func test_field_arithmetics_extension_operations{range_check_ptr, bitwise_ptr: BitwiseBuiltin*}() {
// Test get_square

//Small prime
let p_a = Uint384(7, 0, 0);
let x_a = Uint384(2, 0, 0);
let generator_a = Uint384(3, 0, 0);
let (s_a, r_a) = field_arithmetic.get_square_root(x_a, p_a, generator_a);
assert s_a = 1;

assert r_a.d0 = 3;
assert r_a.d1 = 0;
assert r_a.d2 = 0;

// Goldilocks Prime
let p_b = Uint384(18446744069414584321, 0, 0); // Goldilocks Prime
let x_b = Uint384(25, 0, 0);
let generator_b = Uint384(7, 0, 0);
let (s_b, r_b) = field_arithmetic.get_square_root(x_b, p_b, generator_b);
assert s_b = 1;

assert r_b.d0 = 5;
assert r_b.d1 = 0;
assert r_b.d2 = 0;

// Prime 2**101-99
let p_c = Uint384(77371252455336267181195165, 32767, 0);
let x_c = Uint384(96059601, 0, 0);
let generator_c = Uint384(3, 0, 0);
let (s_c, r_c) = field_arithmetic.get_square_root(x_c, p_c, generator_c);
assert s_c = 1;

assert r_c.d0 = 9801;
assert r_c.d1 = 0;
assert r_c.d2 = 0;

return ();
}

func main{range_check_ptr: felt, bitwise_ptr: BitwiseBuiltin*}() {
test_field_arithmetics_extension_operations();
return ();
}
Loading

0 comments on commit 44bca19

Please sign in to comment.