-
Notifications
You must be signed in to change notification settings - Fork 160
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into perf/share_program_identifiers
- Loading branch information
Showing
15 changed files
with
896 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
36 changes: 36 additions & 0 deletions
36
cairo_programs/benchmarks/field_arithmetic_get_square_benchmark.cairo
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
from starkware.cairo.common.cairo_builtins import BitwiseBuiltin | ||
from starkware.cairo.common.bool import TRUE | ||
from cairo_programs.uint384 import uint384_lib, Uint384, Uint384_expand | ||
from cairo_programs.uint384_extension import uint384_extension_lib | ||
from cairo_programs.field_arithmetic import field_arithmetic | ||
|
||
|
||
func run_get_square{range_check_ptr, bitwise_ptr: BitwiseBuiltin*}(prime: Uint384, generator: Uint384, num: Uint384, iterations: felt) { | ||
alloc_locals; | ||
if (iterations == 0) { | ||
return (); | ||
} | ||
|
||
let (square) = field_arithmetic.mul(num, num, prime); | ||
|
||
let (success, root_1) = field_arithmetic.get_square_root(square, prime, generator); | ||
assert success = 1; | ||
|
||
// We calculate this before in order to prevent revoked range_check_ptr reference due to branching | ||
let (root_2) = uint384_lib.sub(prime, root_1); | ||
let (is_first_root) = uint384_lib.eq(root_1, num); | ||
|
||
if ( is_first_root != TRUE) { | ||
assert root_2 = num; | ||
} | ||
|
||
return run_get_square(prime, generator, square, iterations -1); | ||
} | ||
|
||
func main{range_check_ptr: felt, bitwise_ptr: BitwiseBuiltin*}() { | ||
let p = Uint384(18446744069414584321, 0, 0); // Goldilocks Prime | ||
let x = Uint384(5, 0, 0); | ||
let g = Uint384(7, 0, 0); | ||
run_get_square(p, g, x, 100); | ||
return (); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
// Code taken from https://github.com/NethermindEth/research-basic-Cairo-operations-big-integers/blob/fbf532651959f27037d70cd70ec6dbaf987f535c/lib/field_arithmetic.cairo | ||
from starkware.cairo.common.bitwise import bitwise_and, bitwise_or, bitwise_xor | ||
from starkware.cairo.common.cairo_builtins import BitwiseBuiltin | ||
from starkware.cairo.common.math import assert_in_range, assert_le, assert_nn_le, assert_not_zero | ||
from starkware.cairo.common.math_cmp import is_le | ||
from starkware.cairo.common.pow import pow | ||
from starkware.cairo.common.registers import get_ap, get_fp_and_pc | ||
from cairo_programs.uint384 import uint384_lib, Uint384, Uint384_expand, SHIFT, HALF_SHIFT | ||
from cairo_programs.uint384_extension import uint384_extension_lib, Uint768 | ||
|
||
// Functions for operating elements in a finite field F_p (i.e. modulo a prime p), with p of at most 384 bits | ||
namespace field_arithmetic { | ||
// Computes a * b modulo p | ||
func mul{range_check_ptr}(a: Uint384, b: Uint384, p: Uint384) -> (res: Uint384) { | ||
let (low: Uint384, high: Uint384) = uint384_lib.mul_d(a, b); | ||
let full_mul_result: Uint768 = Uint768(low.d0, low.d1, low.d2, high.d0, high.d1, high.d2); | ||
let ( | ||
quotient: Uint768, remainder: Uint384 | ||
) = uint384_extension_lib.unsigned_div_rem_uint768_by_uint384(full_mul_result, p); | ||
return (remainder,); | ||
} | ||
|
||
// Computes a**2 modulo p | ||
func square{range_check_ptr}(a: Uint384, p: Uint384) -> (res: Uint384) { | ||
let (low: Uint384, high: Uint384) = uint384_lib.square_e(a); | ||
let full_mul_result: Uint768 = Uint768(low.d0, low.d1, low.d2, high.d0, high.d1, high.d2); | ||
let ( | ||
quotient: Uint768, remainder: Uint384 | ||
) = uint384_extension_lib.unsigned_div_rem_uint768_by_uint384(full_mul_result, p); | ||
return (remainder,); | ||
} | ||
|
||
// Finds a square of x in F_p, i.e. x ≅ y**2 (mod p) for some y | ||
// To do so, the following is done in a hint: | ||
// 0. Assume x is not 0 mod p | ||
// 1. Check if x is a square, if yes, find a square root r of it | ||
// 2. If (and only if not), then gx *is* a square (for g a generator of F_p^*), so find a square root r of it | ||
// 3. Check in Cairo that r**2 = x (mod p) or r**2 = gx (mod p), respectively | ||
// NOTE: The function assumes that 0 <= x < p | ||
func get_square_root{range_check_ptr, bitwise_ptr: BitwiseBuiltin*}( | ||
x: Uint384, p: Uint384, generator: Uint384 | ||
) -> (success: felt, res: Uint384) { | ||
alloc_locals; | ||
|
||
// TODO: Create an equality function within field_arithmetic to avoid overflow bugs | ||
let (is_zero) = uint384_lib.eq(x, Uint384(0, 0, 0)); | ||
if (is_zero == 1) { | ||
return (1, Uint384(0, 0, 0)); | ||
} | ||
|
||
local success_x: felt; | ||
local sqrt_x: Uint384; | ||
local sqrt_gx: Uint384; | ||
|
||
// Compute square roots in a hint | ||
%{ | ||
from starkware.python.math_utils import is_quad_residue, sqrt | ||
def split(num: int, num_bits_shift: int = 128, length: int = 3): | ||
a = [] | ||
for _ in range(length): | ||
a.append( num & ((1 << num_bits_shift) - 1) ) | ||
num = num >> num_bits_shift | ||
return tuple(a) | ||
def pack(z, num_bits_shift: int = 128) -> int: | ||
limbs = (z.d0, z.d1, z.d2) | ||
return sum(limb << (num_bits_shift * i) for i, limb in enumerate(limbs)) | ||
generator = pack(ids.generator) | ||
x = pack(ids.x) | ||
p = pack(ids.p) | ||
success_x = is_quad_residue(x, p) | ||
root_x = sqrt(x, p) if success_x else None | ||
success_gx = is_quad_residue(generator*x, p) | ||
root_gx = sqrt(generator*x, p) if success_gx else None | ||
# Check that one is 0 and the other is 1 | ||
if x != 0: | ||
assert success_x + success_gx ==1 | ||
# `None` means that no root was found, but we need to transform these into a felt no matter what | ||
if root_x == None: | ||
root_x = 0 | ||
if root_gx == None: | ||
root_gx = 0 | ||
ids.success_x = int(success_x) | ||
split_root_x = split(root_x) | ||
split_root_gx = split(root_gx) | ||
ids.sqrt_x.d0 = split_root_x[0] | ||
ids.sqrt_x.d1 = split_root_x[1] | ||
ids.sqrt_x.d2 = split_root_x[2] | ||
ids.sqrt_gx.d0 = split_root_gx[0] | ||
ids.sqrt_gx.d1 = split_root_gx[1] | ||
ids.sqrt_gx.d2 = split_root_gx[2] | ||
%} | ||
|
||
// Verify that the values computed in the hint are what they are supposed to be | ||
let (gx: Uint384) = mul(generator, x, p); | ||
if (success_x == 1) { | ||
uint384_lib.check(sqrt_x); | ||
let (is_valid) = uint384_lib.lt(sqrt_x, p); | ||
assert is_valid = 1; | ||
let (sqrt_x_squared: Uint384) = mul(sqrt_x, sqrt_x, p); | ||
// Note these checks may fail if the input x does not satisfy 0<= x < p | ||
// TODO: Create a equality function within field_arithmetic to avoid overflow bugs | ||
let (check_x) = uint384_lib.eq(x, sqrt_x_squared); | ||
assert check_x = 1; | ||
return (1, sqrt_x); | ||
} else { | ||
// In this case success_gx = 1 | ||
uint384_lib.check(sqrt_gx); | ||
let (is_valid) = uint384_lib.lt(sqrt_gx, p); | ||
assert is_valid = 1; | ||
let (sqrt_gx_squared: Uint384) = mul(sqrt_gx, sqrt_gx, p); | ||
let (check_gx) = uint384_lib.eq(gx, sqrt_gx_squared); | ||
assert check_gx = 1; | ||
// No square roots were found | ||
// Note that Uint384(0, 0, 0) is not a square root here, but something needs to be returned | ||
return (0, Uint384(0, 0, 0)); | ||
} | ||
} | ||
|
||
} | ||
|
||
func test_field_arithmetics_extension_operations{range_check_ptr, bitwise_ptr: BitwiseBuiltin*}() { | ||
// Test get_square | ||
|
||
//Small prime | ||
let p_a = Uint384(7, 0, 0); | ||
let x_a = Uint384(2, 0, 0); | ||
let generator_a = Uint384(3, 0, 0); | ||
let (s_a, r_a) = field_arithmetic.get_square_root(x_a, p_a, generator_a); | ||
assert s_a = 1; | ||
|
||
assert r_a.d0 = 3; | ||
assert r_a.d1 = 0; | ||
assert r_a.d2 = 0; | ||
|
||
// Goldilocks Prime | ||
let p_b = Uint384(18446744069414584321, 0, 0); // Goldilocks Prime | ||
let x_b = Uint384(25, 0, 0); | ||
let generator_b = Uint384(7, 0, 0); | ||
let (s_b, r_b) = field_arithmetic.get_square_root(x_b, p_b, generator_b); | ||
assert s_b = 1; | ||
|
||
assert r_b.d0 = 5; | ||
assert r_b.d1 = 0; | ||
assert r_b.d2 = 0; | ||
|
||
// Prime 2**101-99 | ||
let p_c = Uint384(77371252455336267181195165, 32767, 0); | ||
let x_c = Uint384(96059601, 0, 0); | ||
let generator_c = Uint384(3, 0, 0); | ||
let (s_c, r_c) = field_arithmetic.get_square_root(x_c, p_c, generator_c); | ||
assert s_c = 1; | ||
|
||
assert r_c.d0 = 9801; | ||
assert r_c.d1 = 0; | ||
assert r_c.d2 = 0; | ||
|
||
return (); | ||
} | ||
|
||
func main{range_check_ptr: felt, bitwise_ptr: BitwiseBuiltin*}() { | ||
test_field_arithmetics_extension_operations(); | ||
return (); | ||
} |
Oops, something went wrong.