东北大学 2017 年数学建模第四次模拟题目。与 @lyx988、@Lee-faner 合力完成。
最终测试集准确率 90.0%,loss 0.29。
You are given a dataset ("*.h5") containing:
- a training set of train_catvnoncat.h5 file labeled as cat (y=1) or non-cat (y=0)
- a test set of test_catvnoncat.h5 file labeled as cat or non-cat
- each image is of shape (height, width, 3) where 3 is for the 3 channels (RGB).
No.1-3 in the "images" directory are the test images. Of course, you can also select the other cat or non-cat images freely.
You will build a simple image-recognition model that can correctly classify pictures as cat or non-cat.
卷积神经网络
- 四层卷积:输入层 3 层(RGB)、16、32、64、128,ReLU
- 一层前馈:1024 个神经元,ReLU
- 输出:sigmoid(二分类)