Skip to content

kyodaisuu/psi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

Buchholz ψ analyzer

This program analyzes Buchholz ψ function defined in Buchholz (1986). When the user gives an ordinal term a ∈ T, as defined in the reference, the program determines if a ∈ OT. If a ∉ OT, b ∈ OT (o(a) = o(b)) is suggested. For example:

Input: D1(D0(0),D1(D4(0)),D3(D0(0)))
a = D1(D0(0),D1(D4(0)),D3(D0(0)))
where a ∈ T, a ∉ OT. Showing b ∈ OT where o(a) = o(b):
b = D1(D3(D0(0)),D2(0))
o(a) = o(b) = ψ1(ψ3(ψ0(0))+ψ2(0))
 = ψ1(ψ3(1)+ψ2(0))

Use from web or terminal

When environmental variable SCRIPT_NAME is set, it runs as a CGI program. It is running at

https://gyafun.jp/ln/psi.cgi

From command line, ordinal string can be given by comman-line argument. As it is mainly intended for debugging, test script is always run.

Use from program

See following sample code.

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from psi import ordinal
a = '0(1(2(0)),w,2)'  # ordinal string
print(ordinal(a).T)  # a ∈ T as array
print(ordinal(a).strT)  # String of a ∈ T
print(ordinal(a).isPT)  # If a is principal term
print(ordinal(a).isOT)  # If a ∈ OT
print(ordinal(a).strOT)  # b ∈ OT where o(a) = o(b)
print(ordinal(a).ord)  # ordinal expression
print(ordinal(a).simple)  # Simplified ordinal expression
# Error handling
print(ordinal('(1)(2)').invalidString)  # Error in string
print(ordinal('(1)(2)').errMessage)  # Error message

Input string

Examples

  • D0(D1(Dw(0)),0(0))
  • D0(D0(D2(0)),D0(0))
  • D2(D0(D4(0)),D3(0),D6(D3(D6(0))))
  • D0(D3(0),D1(D2(0)),D0(0))
  • 0(1(2),w(3))
  • 0(1(2(0)),0(0))
  • 0(w,1(2(0
  • w#3
  • 1#w
  • ψ0(ψω(0)#1)

Rules

  • Input a ∈ T as shown in the reference
  • D, ψ, ' ' are neglected
  • # is regarded as ,
  • natural numbers are analyzed
  • w and ω are regarded as ω
  • ) is added at the end if needed

Reference

Buchholz, W. (1986): A New System of Proof-Theoretic Ordinal Function. Annals of Pure and Applied Logic, 32:195-207. https://doi.org/10.1016/0168-0072(86)90052-7

About

Buchholz ψ analyzer

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Languages