Code for the paper "Depth-guided dense dynamic filtering network for bokeh effect rendering", ICCV Workshop 2019
Certificate: https://data.vision.ee.ethz.ch/cvl/aim19/AIM2019_award_certificates.pdf
Challenge Report: IEEE Paper Link , PDF
-
Place the input test images in the folder: Set14/LR
-
Change the directory to 'MegaDepth' and run this command (requires pytorch):
python demo_padding.py
- Change the directory to 'Salient_Object_Detection' and run this command (requires tensorflow):
python inference.py --rgb_folder=../Set14/LR
- Change the directory to 'src' and run the final inference command:
python main.py --data_test MyImage --model sm_space2depth_densedecoder_instancenorm_seg_depth_beginning_dynamic_filter_separatedecoder --scale 1 --pre_train ./trained_model/model_latest.pt --test_only --save_results --save 'upload' --testpath ../ --testset Set14
This will generate the final results in the folder: SR/BI/upload/results
If you find our paper/results helpful in your research or work please cite our paper.
@inproceedings{purohit2019depth,
title={Depth-guided dense dynamic filtering network for bokeh effect rendering},
author={Purohit, Kuldeep and Suin, Maitreya and Kandula, Praveen and Ambasamudram, Rajagopalan},
booktitle={2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)},
pages={3417--3426},
year={2019},
organization={IEEE}
}