Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add: Korean translation initialized #10471

Merged
merged 1 commit into from
Oct 3, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion config.toml
Original file line number Diff line number Diff line change
Expand Up @@ -145,4 +145,9 @@ weight = 3
contentDir = "content/no"
# A list of language codes to look for untranslated content, ordered from left to right.
language_alternatives = ["en"]

[languages.ko]
title = "Kubernetes"
description = "Production-Grade Container Orchestration"
languageName = "Korean"
weight = 4
contentDir = "content/ko"
3 changes: 3 additions & 0 deletions content/ko/_common-resources/index.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
---
headless: true
---
62 changes: 62 additions & 0 deletions content/ko/_index.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
---
title: "운영 수준의 컨테이너 오케스트레이션"
abstract: "자동화된 컨테이너 배포, 스케일링과 관리"
cid: home
---

{{< deprecationwarning >}}

{{< blocks/section id="oceanNodes" >}}
{{% blocks/feature image="flower" %}}
### [쿠버네티스]({{< relref "/docs/concepts/overview/what-is-kubernetes" >}})는 컨테이너화된 애플리케이션을 자동으로 배포, 스케일링 및 관리해주는 오픈소스 시스템입니다.

It groups containers that make up an application into logical units for easy management and discovery. Kubernetes builds upon [15 years of experience of running production workloads at Google](http://queue.acm.org/detail.cfm?id=2898444), combined with best-of-breed ideas and practices from the community.
{{% /blocks/feature %}}

{{% blocks/feature image="scalable" %}}
#### 행성 규모 확장성

Designed on the same principles that allows Google to run billions of containers a week, Kubernetes can scale without increasing your ops team.

{{% /blocks/feature %}}

{{% blocks/feature image="blocks" %}}
#### 무한한 유연성

Whether testing locally or running a global enterprise, Kubernetes flexibility grows with you to deliver your applications consistently and easily no matter how complex your need is.

{{% /blocks/feature %}}

{{% blocks/feature image="suitcase" %}}
#### 어디서나 동작

Kubernetes is open source giving you the freedom to take advantage of on-premises, hybrid, or public cloud infrastructure, letting you effortlessly move workloads to where it matters to you.

{{% /blocks/feature %}}

{{< /blocks/section >}}

{{< blocks/section id="video" background-image="kub_video_banner_homepage" >}}
<div class="light-text">
<h2>150+ 마이크로서비스를 쿠버네티스로 마이그레이션하는 도전</h2>
<p>By Sarah Wells, Technical Director for Operations and Reliability, Financial Times</p>
<button id="desktopShowVideoButton" onclick="kub.showVideo()">Watch Video</button>
<br>
<br>
<br>
<a href="https://www.lfasiallc.com/events/kubecon-cloudnativecon-china-2018/" button id="desktopKCButton">Attend KubeCon in Shanghai on Nov. 13-15, 2018</a>
<br>
<br>
<br>
<br>
<a href="https://events.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2018/" button id="desktopKCButton">Attend KubeCon in Seattle on Dec. 11-13, 2018</a>
</div>
<div id="videoPlayer">
<iframe data-url="https://www.youtube.com/embed/H06qrNmGqyE?autoplay=1" frameborder="0" allowfullscreen></iframe>
<button id="closeButton"></button>
</div>
{{< /blocks/section >}}

{{< blocks/kubernetes-features >}}

{{< blocks/case-studies >}}
10 changes: 10 additions & 0 deletions content/ko/case-studies/_index.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
---
title: Case Studies
linkTitle: Case Studies
bigheader: Kubernetes User Case Studies
abstract: A collection of users running Kubernetes in production.
layout: basic
class: gridPage
cid: caseStudies
---

74 changes: 74 additions & 0 deletions content/ko/docs/concepts/_index.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
---
title: 개념
main_menu: true
content_template: templates/concept
weight: 40
---

{{% capture overview %}}

개념 섹션을 통해 쿠버네티스 시스템을 구성하는 요소와 클러스터를 표현하는데 사용되는 추상 개념에 대해 배우고 쿠버네티스가 작동하는 방식에 대해 보다 깊이 이해할 수 있다.

{{% /capture %}}

{{% capture body %}}

## 개요

쿠버네티스를 사용하려면, *쿠버네티스 API 오브젝트로* 클러스터에 대해 사용자가 *바라는 상태를* 기술해야 한다. 어떤 애플리케이션이나 워크로드를 구동시키려고 하는지, 어떤 컨테이너 이미지를 쓰는지, 복제의 수는 몇 개인지, 어떤 네트워크와 디스크 자원을 쓸 수 있도록 할 것인지 등을 의미한다. 바라는 상태를 설정하는 방법은 쿠버네티스 API를 사용해서 오브젝트를 만드는 것인데, 대개 `kubectl`이라는 명령줄 인터페이스를 사용한다. 클러스터와 상호 작용하고 바라는 상태를 설정하거나 수정하기 위해서 쿠버네티스 API를 직접 사용할 수도 있다.

일단 바라는 상태를 설정하고 나면, *쿠버네티스 컨트롤 플레인이* 클러스터의 현재 상태를 바라는 상태와 일치시키기 위한 일을 하게 된다. 그렇게 함으로써, 쿠버네티스가 컨테이너를 시작 또는 재시작 시키거나, 주어진 애플리케이션의 복제 수를 스케일링하는 등의 다양한 작업을 자동으로 수행할 수 있게 된다. 쿠버네티스 컨트롤 플레인은 클러스터에서 돌아가는 프로세스의 집합으로 구성된다.

* **쿠버네티스 마스터**는 클러스터 내 마스터 노드로 지정된 노드 내에서 구동되는 세 개의 프로세스 집합이다. 해당 프로세스는 [kube-apiserver](/docs/admin/kube-apiserver/), [kube-controller-manager](/docs/admin/kube-controller-manager/) 및 [kube-scheduler](/docs/admin/kube-scheduler/)이다.
* 클러스터 내 마스터 노드가 아닌 각각의 노드는 다음 두 개의 프로세스를 구동시킨다.
* 쿠버네티스 마스터와 통신하는 **[kubelet](/docs/admin/kubelet/)**.
* 각 노드의 쿠버네티스 네트워킹 서비스를 반영하는 네트워크 프록시인 **[kube-proxy](/docs/admin/kube-proxy/)**.

## 쿠버네티스 오브젝트

쿠버네티스는 시스템의 상태를 나타내는 추상 개념을 다수 포함하고 있다. 컨테이너화되어 배포된 애플리케이션과 워크로드, 이에 연관된 네트워크와 디스크 자원, 그 밖에 클러스터가 무엇을 하고 있는지에 대한 정보가 이에 해당한다. 이런 추상 개념은 쿠버네티스 API 내 오브젝트로 표현된다. 보다 자세한 내용은 [쿠버네티스 오브젝트 개요](/docs/concepts/abstractions/overview/) 문서를 참조한다.

기초적인 쿠버네티스 오브젝트에는 다음과 같은 것들이 있다.

* [파드](/docs/concepts/workloads/pods/pod-overview/)
* [서비스](/docs/concepts/services-networking/service/)
* [볼륨](/docs/concepts/storage/volumes/)
* [네임스페이스](/docs/concepts/overview/working-with-objects/namespaces/)

추가로, 쿠버네티스에는 컨트롤러라는 보다 높은 수준의 추상 개념도 다수 있다. 컨트롤러는 기초 오브젝트를 기반으로, 부가 기능 및 편의 기능을 제공해준다. 다음이 포함된다.

* [레플리카 셋](/docs/concepts/workloads/controllers/replicaset/)
* [디플로이먼트](/docs/concepts/workloads/controllers/deployment/)
* [스테이트풀 셋](/docs/concepts/workloads/controllers/statefulset/)
* [데몬 셋](/docs/concepts/workloads/controllers/daemonset/)
* [잡](/docs/concepts/workloads/controllers/jobs-run-to-completion/)

## 쿠버네티스 컨트롤 플레인

쿠버네티스 마스터와 kubelet 프로세스와 같은 쿠버네티스 컨트롤 플레인의 다양한 구성 요소는 쿠버네티스가 클러스터와 통신하는 방식을 관장한다. 컨트롤 플레인은 시스템 내 모든 쿠버네티스 오브젝트의 레코드를 유지하면서, 오브젝트의 상태를 관리하는 제어 루프를 지속적으로 구동시킨다. 컨트롤 플레인의 제어 루프는 클러스터 내 변경이 발생하면 언제라도 응답하고 시스템 내 모든 오브젝트의 실제 상태가 사용자가 바라는 상태와 일치시키기 위한 일을 한다.

예를 들어, 쿠버네티스 API를 사용해서 디플로이먼트 오브젝트를 만들 때에는, 바라는 상태를 시스템에 신규로 입력해야한다. 쿠버네티스 컨트롤 플레인이 오브젝트 생성을 기록하고, 사용자 지시대로 필요한 애플리케이션을 시작시키고 클러스터 노드에 스케줄링한다. 그래서 결국 클러스터의 실제 상태가 바라는 상태와 일치하게 된다.

### 쿠버네티스 마스터

클러스터에 대해 바라는 상태를 유지할 책임은 쿠버네티스 마스터에 있다. `kubectl` 명령줄 인터페이스와 같은 것을 사용해서 쿠버네티스로 상호 작용할 때에는 쿠버네티스 마스터와 통신하고 있는 셈이다.

> "마스터"는 클러스터 상태를 관리하는 프로세스의 집합이다. 주로 이 프로세스는 클러스터 내 단일 노드에서 구동되며, 이 노드가 바로 마스터이다. 마스터는 가용성과 중복을 위해 복제될 수도 있다.

### 쿠버네티스 노드

클러스터 내 노드는 애플리케이션과 클라우드 워크플로우를 구동시키는 머신(VM, 물리 서버 등)이다. 쿠버네티스 마스터는 각 노드를 관리한다. 직접 노드와 직접 상호 작용할 일은 거의 없을 것이다.

#### 오브젝트 메타데이터


* [어노테이션](/docs/concepts/overview/working-with-objects/annotations/)

{{% /capture %}}

{{% capture whatsnext %}}

개념 페이지를 작성하기를 원하면, 개념 페이지 유형과 개념 템플릿에 대한 정보가 있는
[페이지 템플릿 사용하기](/docs/home/contribute/page-templates/)를 참조한다.

{{% /capture %}}
207 changes: 207 additions & 0 deletions content/ko/docs/concepts/overview/what-is-kubernetes.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,207 @@
---
reviewers:
- bgrant0607
- mikedanese
title: What is Kubernetes?
content_template: templates/concept
weight: 10
---

{{% capture overview %}}
This page is an overview of Kubernetes.
{{% /capture %}}

{{% capture body %}}
Kubernetes is a portable, extensible open-source platform for managing
containerized workloads and services, that facilitates both
declarative configuration and automation. It has a large, rapidly
growing ecosystem. Kubernetes services, support, and tools are widely available.

Google open-sourced the Kubernetes project in 2014. Kubernetes builds upon
a [decade and a half of experience that Google has with running
production workloads at
scale](https://research.google.com/pubs/pub43438.html), combined with
best-of-breed ideas and practices from the community.

## Why do I need Kubernetes and what can it do?

Kubernetes has a number of features. It can be thought of as:

- a container platform
- a microservices platform
- a portable cloud platform
and a lot more.

Kubernetes provides a **container-centric** management environment. It
orchestrates computing, networking, and storage infrastructure on
behalf of user workloads. This provides much of the simplicity of
Platform as a Service (PaaS) with the flexibility of Infrastructure as
a Service (IaaS), and enables portability across infrastructure
providers.

## How is Kubernetes a platform?

Even though Kubernetes provides a lot of functionality, there are
always new scenarios that would benefit from new
features. Application-specific workflows can be streamlined to
accelerate developer velocity. Ad hoc orchestration that is acceptable
initially often requires robust automation at scale. This is why
Kubernetes was also designed to serve as a platform for building an
ecosystem of components and tools to make it easier to deploy, scale,
and manage applications.

[Labels](/docs/concepts/overview/working-with-objects/labels/) empower
users to organize their resources however they
please. [Annotations](/docs/concepts/overview/working-with-objects/annotations/)
enable users to decorate resources with custom information to
facilitate their workflows and provide an easy way for management
tools to checkpoint state.

Additionally, the [Kubernetes control
plane](/docs/concepts/overview/components/) is built upon the same
[APIs](/docs/reference/using-api/api-overview/) that are available to developers
and users. Users can write their own controllers, such as
[schedulers](https://github.com/kubernetes/community/blob/{{< param "githubbranch" >}}/contributors/devel/scheduler.md),
with [their own
APIs](/docs/concepts/api-extension/custom-resources/)
that can be targeted by a general-purpose [command-line
tool](/docs/user-guide/kubectl-overview/).

This
[design](https://git.k8s.io/community/contributors/design-proposals/architecture/architecture.md)
has enabled a number of other systems to build atop Kubernetes.

## What Kubernetes is not

Kubernetes is not a traditional, all-inclusive PaaS (Platform as a
Service) system. Since Kubernetes operates at the container level
rather than at the hardware level, it provides some generally
applicable features common to PaaS offerings, such as deployment,
scaling, load balancing, logging, and monitoring. However, Kubernetes
is not monolithic, and these default solutions are optional and
pluggable. Kubernetes provides the building blocks for building developer
platforms, but preserves user choice and flexibility where it is
important.

Kubernetes:

* Does not limit the types of applications supported. Kubernetes aims
to support an extremely diverse variety of workloads, including
stateless, stateful, and data-processing workloads. If an
application can run in a container, it should run great on
Kubernetes.
* Does not deploy source code and does not build your
application. Continuous Integration, Delivery, and Deployment
(CI/CD) workflows are determined by organization cultures and preferences
as well as technical requirements.
* Does not provide application-level services, such as middleware
(e.g., message buses), data-processing frameworks (for example,
Spark), databases (e.g., mysql), caches, nor cluster storage systems (e.g.,
Ceph) as built-in services. Such components can run on Kubernetes, and/or
can be accessed by applications running on Kubernetes through portable
mechanisms, such as the Open Service Broker.
* Does not dictate logging, monitoring, or alerting solutions. It provides
some integrations as proof of concept, and mechanisms to collect and
export metrics.
* Does not provide nor mandate a configuration language/system (e.g.,
[jsonnet](https://github.com/google/jsonnet)). It provides a declarative
API that may be targeted by arbitrary forms of declarative specifications.
* Does not provide nor adopt any comprehensive machine configuration,
maintenance, management, or self-healing systems.

Additionally, Kubernetes is not a mere *orchestration system*. In
fact, it eliminates the need for orchestration. The technical
definition of *orchestration* is execution of a defined workflow:
first do A, then B, then C. In contrast, Kubernetes is comprised of a
set of independent, composable control processes that continuously
drive the current state towards the provided desired state. It
shouldn't matter how you get from A to C. Centralized control is also
not required. This results in a system that is easier to use and more
powerful, robust, resilient, and extensible.

## Why containers?

Looking for reasons why you should be using containers?

![Why Containers?](/images/docs/why_containers.svg)

The *Old Way* to deploy applications was to install the applications
on a host using the operating-system package manager. This had the
disadvantage of entangling the applications' executables,
configuration, libraries, and lifecycles with each other and with the
host OS. One could build immutable virtual-machine images in order to
achieve predictable rollouts and rollbacks, but VMs are heavyweight
and non-portable.

The *New Way* is to deploy containers based on operating-system-level
virtualization rather than hardware virtualization. These containers
are isolated from each other and from the host: they have their own
filesystems, they can't see each others' processes, and their
computational resource usage can be bounded. They are easier to build
than VMs, and because they are decoupled from the underlying
infrastructure and from the host filesystem, they are portable across
clouds and OS distributions.

Because containers are small and fast, one application can be packed
in each container image. This one-to-one application-to-image
relationship unlocks the full benefits of containers. With containers,
immutable container images can be created at build/release time rather
than deployment time, since each application doesn't need to be
composed with the rest of the application stack, nor married to the
production infrastructure environment. Generating container images at
build/release time enables a consistent environment to be carried from
development into production. Similarly, containers are vastly more
transparent than VMs, which facilitates monitoring and
management. This is especially true when the containers' process
lifecycles are managed by the infrastructure rather than hidden by a
process supervisor inside the container. Finally, with a single
application per container, managing the containers becomes tantamount
to managing deployment of the application.

Summary of container benefits:

* **Agile application creation and deployment**:
Increased ease and efficiency of container image creation compared to VM image use.
* **Continuous development, integration, and deployment**:
Provides for reliable and frequent container image build and
deployment with quick and easy rollbacks (due to image
immutability).
* **Dev and Ops separation of concerns**:
Create application container images at build/release time rather
than deployment time, thereby decoupling applications from
infrastructure.
* **Observability**
Not only surfaces OS-level information and metrics, but also application
health and other signals.
* **Environmental consistency across development, testing, and production**:
Runs the same on a laptop as it does in the cloud.
* **Cloud and OS distribution portability**:
Runs on Ubuntu, RHEL, CoreOS, on-prem, Google Kubernetes Engine, and anywhere else.
* **Application-centric management**:
Raises the level of abstraction from running an OS on virtual
hardware to running an application on an OS using logical resources.
* **Loosely coupled, distributed, elastic, liberated [micro-services](https://martinfowler.com/articles/microservices.html)**:
Applications are broken into smaller, independent pieces and can
be deployed and managed dynamically -- not a fat monolithic stack
running on one big single-purpose machine.
* **Resource isolation**:
Predictable application performance.
* **Resource utilization**:
High efficiency and density.

## What does Kubernetes mean? K8s?

The name **Kubernetes** originates from Greek, meaning *helmsman* or
*pilot*, and is the root of *governor* and
[cybernetic](http://www.etymonline.com/index.php?term=cybernetics). *K8s*
is an abbreviation derived by replacing the 8 letters "ubernete" with
"8".

{{% /capture %}}

{{% capture whatsnext %}}
* Ready to [Get Started](/docs/setup/)?
* For more details, see the [Kubernetes Documentation](/docs/home/).
{{% /capture %}}


18 changes: 18 additions & 0 deletions content/ko/docs/home/_index.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
---
title: 쿠버네티스 문서
layout: docsportal_home
noedit: true
cid: userJourneys
css: /css/style_user_journeys.css
js: /js/user-journeys/home.js, https://use.fontawesome.com/4bcc658a89.js
display_browse_numbers: true
linkTitle: "문서"
main_menu: true
weight: 10
menu:
main:
title: "문서"
weight: 20
post: >
<p>Learn how to use Kubernetes with the use of walkthroughs, samples, and reference documentation. You can even <a href="/editdocs/" data-auto-burger-exclude>help contribute to the docs</a>!</p>
---
8 changes: 8 additions & 0 deletions content/ko/docs/reference/glossary/index.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
---
title: 표준 용어집
layout: glossary
noedit: true
default_active_tag: fundamental
weight: 5
---

Loading