Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AWS SageMaker : Use IAM Roles for Service Account #3719

Merged
merged 6 commits into from
May 21, 2020
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion components/aws/sagemaker/deploy/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ Argument | Description | Optional (in pipeline definition
:--- | :---------- | :---------- | :---------- | :----------| :---------- | :----------|
model_name_[1, 3] | The name of the model that you want to host. This is the name that you specified when creating the model | No | No | String | | |
variant_name_[1, 3] | The name of the production variant | Yes | Yes | String | | variant_name_[1, 3] |
instance_type_[1, 3] | The ML compute instance type | Yes | Yes | String | ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge | ml.m4.xlarge |
instance_type_[1, 3] | The ML compute instance type | Yes | Yes | String | ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge [and many more](https://aws.amazon.com/sagemaker/pricing/instance-types/)| ml.m4.xlarge |
akartsky marked this conversation as resolved.
Show resolved Hide resolved
initial_instance_count_[1, 3] | Number of instances to launch initially | Yes | Yes | Integer | ≥ 1 | 1 |
initial_variant_weight_[1, 3] | Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. | Yes | Yes | Float | Minimum value of 0 | |
accelerator_type_[1, 3] | The size of the Elastic Inference (EI) instance to use for the production variant | Yes | Yes | String| ml.eia1.medium, ml.eia1.large, ml.eia1.xlarge | |
Expand Down
12 changes: 3 additions & 9 deletions components/aws/sagemaker/deploy/src/deploy.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,25 +23,19 @@ def create_parser():
parser.add_argument('--variant_name_1', type=str.strip, required=False, help='The name of the production variant.', default='variant-name-1')
parser.add_argument('--model_name_1', type=str.strip, required=True, help='The model name used for endpoint deployment.')
parser.add_argument('--initial_instance_count_1', type=_utils.str_to_int, required=False, help='Number of instances to launch initially.', default=1)
parser.add_argument('--instance_type_1', choices=['ml.m4.xlarge', 'ml.m4.2xlarge', 'ml.m4.4xlarge', 'ml.m4.10xlarge', 'ml.m4.16xlarge', 'ml.m5.large', 'ml.m5.xlarge', 'ml.m5.2xlarge', 'ml.m5.4xlarge',
'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge',
'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge', ''], type=str.strip, required=False, help='The ML compute instance type.', default='ml.m4.xlarge')
parser.add_argument('--instance_type_1', type=str.strip, required=False, help='The ML compute instance type.')
parser.add_argument('--initial_variant_weight_1', type=_utils.str_to_float, required=False, help='Determines initial traffic distribution among all of the models that you specify in the endpoint configuration.', default=1.0)
parser.add_argument('--accelerator_type_1', choices=['ml.eia1.medium', 'ml.eia1.large', 'ml.eia1.xlarge', ''], type=str.strip, required=False, help='The size of the Elastic Inference (EI) instance to use for the production variant.', default='')
parser.add_argument('--variant_name_2', type=str.strip, required=False, help='The name of the production variant.', default='variant-name-2')
parser.add_argument('--model_name_2', type=str.strip, required=False, help='The model name used for endpoint deployment.', default='')
parser.add_argument('--initial_instance_count_2', type=_utils.str_to_int, required=False, help='Number of instances to launch initially.', default=1)
parser.add_argument('--instance_type_2', choices=['ml.m4.xlarge', 'ml.m4.2xlarge', 'ml.m4.4xlarge', 'ml.m4.10xlarge', 'ml.m4.16xlarge', 'ml.m5.large', 'ml.m5.xlarge', 'ml.m5.2xlarge', 'ml.m5.4xlarge',
'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge',
'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge', ''], type=str.strip, required=False, help='The ML compute instance type.', default='ml.m4.xlarge')
parser.add_argument('--instance_type_2', type=str.strip, required=False, help='The ML compute instance type.', default='ml.m4.xlarge')
parser.add_argument('--initial_variant_weight_2', type=_utils.str_to_float, required=False, help='Determines initial traffic distribution among all of the models that you specify in the endpoint configuration.', default=1.0)
parser.add_argument('--accelerator_type_2', choices=['ml.eia1.medium', 'ml.eia1.large', 'ml.eia1.xlarge', ''], type=str.strip, required=False, help='The size of the Elastic Inference (EI) instance to use for the production variant.', default='')
parser.add_argument('--variant_name_3', type=str.strip, required=False, help='The name of the production variant.', default='variant-name-3')
parser.add_argument('--model_name_3', type=str.strip, required=False, help='The model name used for endpoint deployment.', default='')
parser.add_argument('--initial_instance_count_3', type=_utils.str_to_int, required=False, help='Number of instances to launch initially.', default=1)
parser.add_argument('--instance_type_3', choices=['ml.m4.xlarge', 'ml.m4.2xlarge', 'ml.m4.4xlarge', 'ml.m4.10xlarge', 'ml.m4.16xlarge', 'ml.m5.large', 'ml.m5.xlarge', 'ml.m5.2xlarge', 'ml.m5.4xlarge',
'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge',
'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge', ''], type=str.strip, required=False, help='The ML compute instance type.', default='ml.m4.xlarge')
parser.add_argument('--instance_type_3', type=str.strip, required=False, help='The ML compute instance type.', default='ml.m4.xlarge')
parser.add_argument('--initial_variant_weight_3', type=_utils.str_to_float, required=False, help='Determines initial traffic distribution among all of the models that you specify in the endpoint configuration.', default=1.0)
parser.add_argument('--accelerator_type_3', choices=['ml.eia1.medium', 'ml.eia1.large', 'ml.eia1.xlarge', ''], type=str.strip, required=False, help='The size of the Elastic Inference (EI) instance to use for the production variant.', default='')
parser.add_argument('--resource_encryption_key', type=str.strip, required=False, help='The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s).', default='')
Expand Down
2 changes: 1 addition & 1 deletion components/aws/sagemaker/hyperparameter_tuning/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ categorical_parameters | The array of CategoricalParameterRange objects that spe
channels | A list of dicts specifying the input channels (at least one); refer to [documentation](https://github.com/awsdocs/amazon-sagemaker-developer-guide/blob/master/doc_source/API_Channel.md) for parameters | No | No | List of Dicts | | |
output_location | The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job | No | No | String | | |
output_encryption_key | The AWS KMS key that Amazon SageMaker uses to encrypt the model artifacts | Yes | Yes | String | | |
instance_type | The ML compute instance type | Yes | No | String | ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge | ml.m4.xlarge |
instance_type | The ML compute instance type | Yes | No | String | ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge [and many more](https://aws.amazon.com/sagemaker/pricing/instance-types/)| ml.m4.xlarge |
instance_count | The number of ML compute instances to use in each training job | Yes | Yes | Int | ≥ 1 | 1 |
volume_size | The size of the ML storage volume that you want to provision in GB | Yes | Yes | Int | ≥ 1 | 30 |
max_num_jobs | The maximum number of training jobs that a hyperparameter tuning job can launch | No | No | Int | [1, 500] | |
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,9 +37,7 @@ def create_parser():
parser.add_argument('--channels', type=_utils.str_to_json_list, required=True, help='A list of dicts specifying the input channels. Must have at least one.')
parser.add_argument('--output_location', type=str.strip, required=True, help='The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job.')
parser.add_argument('--output_encryption_key', type=str.strip, required=False, help='The AWS KMS key that Amazon SageMaker uses to encrypt the model artifacts.', default='')
parser.add_argument('--instance_type', choices=['ml.m4.xlarge', 'ml.m4.2xlarge', 'ml.m4.4xlarge', 'ml.m4.10xlarge', 'ml.m4.16xlarge', 'ml.m5.large', 'ml.m5.xlarge', 'ml.m5.2xlarge', 'ml.m5.4xlarge',
'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge',
'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge'], type=str.strip, required=False, help='The ML compute instance type.', default='ml.m4.xlarge')
parser.add_argument('--instance_type', type=str.strip, required=False, help='The ML compute instance type.', default='ml.m4.xlarge')
parser.add_argument('--instance_count', type=_utils.str_to_int, required=False, help='The number of ML compute instances to use in each training job.', default=1)
parser.add_argument('--volume_size', type=_utils.str_to_int, required=False, help='The size of the ML storage volume that you want to provision.', default=1)
parser.add_argument('--max_num_jobs', type=_utils.str_to_int, required=True, help='The maximum number of training jobs that a hyperparameter tuning job can launch.')
Expand Down
4 changes: 2 additions & 2 deletions components/aws/sagemaker/train/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ metric_definitions | The dictionary of name-regex pairs specify the metrics that
put_mode | The input mode that the algorithm supports | No | String | File, Pipe | File |
hyperparameters | Hyperparameters for the selected algorithm | No | Dict | [Depends on Algo](https://docs.aws.amazon.com/sagemaker/latest/dg/k-means-api-config.html)| |
channels | A list of dicts specifying the input channels (at least one); refer to [documentation](https://github.com/awsdocs/amazon-sagemaker-developer-guide/blob/master/doc_source/API_Channel.md) for parameters | No | No | List of Dicts | | |
instance_type | The ML compute instance type | Yes | No | String | ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge | ml.m4.xlarge |
instance_type | The ML compute instance type | Yes | No | String | ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge [and many more](https://aws.amazon.com/sagemaker/pricing/instance-types/) | ml.m4.xlarge |
instance_count | The number of ML compute instances to use in each training job | Yes | Int | ≥ 1 | 1 |
volume_size | The size of the ML storage volume that you want to provision in GB | Yes | Int | ≥ 1 | 30 |
resource_encryption_key | The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) | Yes | String | | |
Expand All @@ -42,7 +42,7 @@ tags | Key-value pairs to categorize AWS resources | Yes | Dict | | {} |
Stores the Model in the s3 bucket you specified

# Example code
Simple example pipeline with only Train component : [simple_train_pipeline](https://github.com/kubeflow/pipelines/tree/documents/samples/contrib/aws-samples/simple_train_pipeline)
Simple example pipeline with only Train component : [simple_train_pipeline](https://github.com/kubeflow/pipelines/tree/master/samples/contrib/aws-samples/simple_train_pipeline)

# Resources
* [Using Amazon built-in algorithms](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html)
4 changes: 1 addition & 3 deletions components/aws/sagemaker/train/src/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,9 +27,7 @@ def create_parser():
parser.add_argument('--training_input_mode', choices=['File', 'Pipe'], type=str.strip, help='The input mode that the algorithm supports. File or Pipe.', default='File')
parser.add_argument('--hyperparameters', type=_utils.str_to_json_dict, help='Dictionary of hyperparameters for the the algorithm.', default='{}')
parser.add_argument('--channels', type=_utils.str_to_json_list, required=True, help='A list of dicts specifying the input channels. Must have at least one.')
parser.add_argument('--instance_type', required=True, choices=['ml.m4.xlarge', 'ml.m4.2xlarge', 'ml.m4.4xlarge', 'ml.m4.10xlarge', 'ml.m4.16xlarge', 'ml.m5.large', 'ml.m5.xlarge', 'ml.m5.2xlarge', 'ml.m5.4xlarge',
'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge',
'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge'], type=str.strip, help='The ML compute instance type.', default='ml.m4.xlarge')
parser.add_argument('--instance_type', required=True, type=str.strip, help='The ML compute instance type.')
parser.add_argument('--instance_count', required=True, type=_utils.str_to_int, help='The registry path of the Docker image that contains the training algorithm.', default=1)
parser.add_argument('--volume_size', type=_utils.str_to_int, required=True, help='The size of the ML storage volume that you want to provision.', default=1)
parser.add_argument('--resource_encryption_key', type=str.strip, required=False, help='The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s).', default='')
Expand Down
Loading