Elastic Decision Transformer, Yueh-Hua Wu, Xiaolong Wang, Masashi Hamaya, NeurIPS 2023.
Elastic Decision Transformer is a novel Decision Transformer approach that enables trajectory stitching by adopting different history length.
@article{wu2023elastic,
title={Elastic Decision Transformer},
author={Wu, Yueh-Hua and Wang, Xiaolong and Hamaya, Masashi},
journal={arXiv preprint arXiv:2307.02484},
year={2023}
}
We prepared a Dockerfile and bash scripts to set up the environment.
- Build the Docker image and start a Docker container
# Download the code from this repo
git clone https://github.com/kristery/Elastic-DT.git
cd Elastic-DT
bash build_image.sh
bash start_container.sh
- Download D4RL datasets
cd /workspace
python data/download_d4rl_datasets.py
- Train the EDT agent
python scripts/train_edt.py --env hopper --dataset medium-replay
python scripts/eval_edt.py --chk_pt_name saved_model_name_from_training.pt
The implementation of EDT is based on min-decision-transformer