Skip to content

krey/rrpy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

rrpy

rrpy is a scikit-learn compatible Python implementation of reduced rank ridge regression. It is based on the rrs.fit method of the R package rrpack, which is in turn based on [1].

Installation

pip install git+https://github.com/krey/rrpy.git

Usage

This implementation does not support missing values, though such a feature could be added using https://github.com/aksarkar/wlra.

The ReducedRankRidge estimator has a memory parameter which allows rapid tuning of the rank parameter:

import sklearn.datasets
import joblib
from rrpy import ReducedRankRidge
X, Y = sklearn.datasets.make_regression(n_samples=1000, n_features=500, n_targets=50, random_state=1, n_informative=25)
memory = joblib.Memory(location='/tmp/rrpy-test/', verbose=2)
estimator = ReducedRankRidge(memory=memory, rank=10)
estimator.fit(X, Y)
estimator.rank = 20
estimator.fit(X, Y) # cached
memory.clear(warn=False)

References

[1] Mukherjee, A. and Zhu, J. (2011) Reduced rank ridge regression and its kernel extensions.

About

Reduced rank regression in Python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages