Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, VertexAI, TogetherAI, Azure, OpenAI, Groq etc.]
LiteLLM manages:
- Translate inputs to provider's
completion
,embedding
, andimage_generation
endpoints - Consistent output, text responses will always be available at
['choices'][0]['message']['content']
- Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router
- Set Budgets & Rate limits per project, api key, model LiteLLM Proxy Server (LLM Gateway)
Jump to LiteLLM Proxy (LLM Gateway) Docs
Jump to Supported LLM Providers
π¨ Stable Release: Use docker images with the -stable
tag. These have undergone 12 hour load tests, before being published.
Support for more providers. Missing a provider or LLM Platform, raise a feature request.
Usage (Docs)
Important
LiteLLM v1.0.0 now requires openai>=1.0.0
. Migration guide here
LiteLLM v1.40.14+ now requires pydantic>=2.0.0
. No changes required.
pip install litellm
from litellm import completion
import os
## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-openai-key"
os.environ["ANTHROPIC_API_KEY"] = "your-cohere-key"
messages = [{ "content": "Hello, how are you?","role": "user"}]
# openai call
response = completion(model="openai/gpt-4o", messages=messages)
# anthropic call
response = completion(model="anthropic/claude-3-sonnet-20240229", messages=messages)
print(response)
{
"id": "chatcmpl-565d891b-a42e-4c39-8d14-82a1f5208885",
"created": 1734366691,
"model": "claude-3-sonnet-20240229",
"object": "chat.completion",
"system_fingerprint": null,
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "Hello! As an AI language model, I don't have feelings, but I'm operating properly and ready to assist you with any questions or tasks you may have. How can I help you today?",
"role": "assistant",
"tool_calls": null,
"function_call": null
}
}
],
"usage": {
"completion_tokens": 43,
"prompt_tokens": 13,
"total_tokens": 56,
"completion_tokens_details": null,
"prompt_tokens_details": {
"audio_tokens": null,
"cached_tokens": 0
},
"cache_creation_input_tokens": 0,
"cache_read_input_tokens": 0
}
}
Call any model supported by a provider, with model=<provider_name>/<model_name>
. There might be provider-specific details here, so refer to provider docs for more information
Async (Docs)
from litellm import acompletion
import asyncio
async def test_get_response():
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
response = await acompletion(model="openai/gpt-4o", messages=messages)
return response
response = asyncio.run(test_get_response())
print(response)
Streaming (Docs)
liteLLM supports streaming the model response back, pass stream=True
to get a streaming iterator in response.
Streaming is supported for all models (Bedrock, Huggingface, TogetherAI, Azure, OpenAI, etc.)
from litellm import completion
response = completion(model="openai/gpt-4o", messages=messages, stream=True)
for part in response:
print(part.choices[0].delta.content or "")
# claude 2
response = completion('anthropic/claude-3-sonnet-20240229', messages, stream=True)
for part in response:
print(part)
{
"id": "chatcmpl-2be06597-eb60-4c70-9ec5-8cd2ab1b4697",
"created": 1734366925,
"model": "claude-3-sonnet-20240229",
"object": "chat.completion.chunk",
"system_fingerprint": null,
"choices": [
{
"finish_reason": null,
"index": 0,
"delta": {
"content": "Hello",
"role": "assistant",
"function_call": null,
"tool_calls": null,
"audio": null
},
"logprobs": null
}
]
}
Logging Observability (Docs)
LiteLLM exposes pre defined callbacks to send data to Lunary, Langfuse, DynamoDB, s3 Buckets, Helicone, Promptlayer, Traceloop, Athina, Slack, MLflow
from litellm import completion
## set env variables for logging tools
os.environ["LUNARY_PUBLIC_KEY"] = "your-lunary-public-key"
os.environ["HELICONE_API_KEY"] = "your-helicone-auth-key"
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["ATHINA_API_KEY"] = "your-athina-api-key"
os.environ["OPENAI_API_KEY"]
# set callbacks
litellm.success_callback = ["lunary", "langfuse", "athina", "helicone"] # log input/output to lunary, langfuse, supabase, athina, helicone etc
#openai call
response = completion(model="anthropic/claude-3-sonnet-20240229", messages=[{"role": "user", "content": "Hi π - i'm openai"}])
LiteLLM Proxy Server (LLM Gateway) - (Docs)
Track spend + Load Balance across multiple projects
The proxy provides:
π Proxy Endpoints - Swagger Docs
pip install 'litellm[proxy]'
$ litellm --model huggingface/bigcode/starcoder
#INFO: Proxy running on http://0.0.0.0:4000
import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
Proxy Key Management (Docs)
Connect the proxy with a Postgres DB to create proxy keys
# Get the code
git clone https://github.com/BerriAI/litellm
# Go to folder
cd litellm
# Add the master key - you can change this after setup
echo 'LITELLM_MASTER_KEY="sk-1234"' > .env
# Add the litellm salt key - you cannot change this after adding a model
# It is used to encrypt / decrypt your LLM API Key credentials
# We recommned - https://1password.com/password-generator/
# password generator to get a random hash for litellm salt key
echo 'LITELLM_SALT_KEY="sk-1234"' > .env
source .env
# Start
docker-compose up
UI on /ui
on your proxy server
Set budgets and rate limits across multiple projects
POST /key/generate
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m","metadata": {"user": "[email protected]", "team": "core-infra"}}'
{
"key": "sk-kdEXbIqZRwEeEiHwdg7sFA", # Bearer token
"expires": "2023-11-19T01:38:25.838000+00:00" # datetime object
}
Supported Providers (Docs)
Provider | Completion | Streaming | Async Completion | Async Streaming | Async Embedding | Async Image Generation |
---|---|---|---|---|---|---|
openai | β | β | β | β | β | β |
azure | β | β | β | β | β | β |
aws - sagemaker | β | β | β | β | β | |
aws - bedrock | β | β | β | β | β | |
google - vertex_ai | β | β | β | β | β | β |
google - palm | β | β | β | β | ||
google AI Studio - gemini | β | β | β | β | ||
mistral ai api | β | β | β | β | β | |
cloudflare AI Workers | β | β | β | β | ||
cohere | β | β | β | β | β | |
anthropic | β | β | β | β | ||
empower | β | β | β | β | ||
huggingface | β | β | β | β | β | |
replicate | β | β | β | β | ||
together_ai | β | β | β | β | ||
openrouter | β | β | β | β | ||
ai21 | β | β | β | β | ||
baseten | β | β | β | β | ||
vllm | β | β | β | β | ||
nlp_cloud | β | β | β | β | ||
aleph alpha | β | β | β | β | ||
petals | β | β | β | β | ||
ollama | β | β | β | β | β | |
deepinfra | β | β | β | β | ||
perplexity-ai | β | β | β | β | ||
Groq AI | β | β | β | β | ||
Deepseek | β | β | β | β | ||
anyscale | β | β | β | β | ||
IBM - watsonx.ai | β | β | β | β | β | |
voyage ai | β | |||||
xinference [Xorbits Inference] | β | |||||
FriendliAI | β | β | β | β | ||
Galadriel | β | β | β | β |
To contribute: Clone the repo locally -> Make a change -> Submit a PR with the change.
Here's how to modify the repo locally: Step 1: Clone the repo
git clone https://github.com/BerriAI/litellm.git
Step 2: Navigate into the project, and install dependencies:
cd litellm
poetry install -E extra_proxy -E proxy
Step 3: Test your change:
cd litellm/tests # pwd: Documents/litellm/litellm/tests
poetry run flake8
poetry run pytest .
Step 4: Submit a PR with your changes! π
- push your fork to your GitHub repo
- submit a PR from there
Follow these instructions if you want to build / run the LiteLLM Docker Image yourself.
Step 1: Clone the repo
git clone https://github.com/BerriAI/litellm.git
Step 2: Build the Docker Image
Build using Dockerfile.non_root
docker build -f docker/Dockerfile.non_root -t litellm_test_image .
Step 3: Run the Docker Image
Make sure config.yaml is present in the root directory. This is your litellm proxy config file.
docker run \
-v $(pwd)/proxy_config.yaml:/app/config.yaml \
-e DATABASE_URL="postgresql://xxxxxxxx" \
-e LITELLM_MASTER_KEY="sk-1234" \
-p 4000:4000 \
litellm_test_image \
--config /app/config.yaml --detailed_debug
For companies that need better security, user management and professional support
This covers:
- β Features under the LiteLLM Commercial License:
- β Feature Prioritization
- β Custom Integrations
- β Professional Support - Dedicated discord + slack
- β Custom SLAs
- β Secure access with Single Sign-On
LiteLLM follows the Google Python Style Guide.
We run:
- Ruff for formatting and linting checks
- Mypy + Pyright for typing 1, 2
- Black for formatting
- isort for import sorting
If you have suggestions on how to improve the code quality feel free to open an issue or a PR.
- Schedule Demo π
- Community Discord π
- Our numbers π +1 (770) 8783-106 / β+1 (412) 618-6238β¬
- Our emails βοΈ [email protected] / [email protected]
- Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI and Cohere.