-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add unit tests for mlengine_operator_utils (#9702)
GitOrigin-RevId: 3cc5756d04c7d3fd14b71e9ec6f5f906d5a24212
- Loading branch information
1 parent
1de8729
commit 24368cd
Showing
2 changed files
with
277 additions
and
1 deletion.
There are no files selected for viewing
277 changes: 277 additions & 0 deletions
277
tests/providers/google/cloud/utils/test_mlengine_operator_utils.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,277 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
import base64 | ||
import json | ||
import unittest | ||
from datetime import datetime | ||
|
||
import dill | ||
import mock | ||
|
||
from airflow.exceptions import AirflowException | ||
from airflow.models import DAG | ||
from airflow.operators.python import PythonOperator | ||
from airflow.providers.google.cloud.hooks.gcs import GCSHook | ||
from airflow.providers.google.cloud.operators.dataflow import DataflowCreatePythonJobOperator | ||
from airflow.providers.google.cloud.utils.mlengine_operator_utils import create_evaluate_ops | ||
|
||
TASK_PREFIX = "test-task-prefix" | ||
TASK_PREFIX_PREDICTION = TASK_PREFIX + "-prediction" | ||
TASK_PREFIX_SUMMARY = TASK_PREFIX + "-summary" | ||
TASK_PREFIX_VALIDATION = TASK_PREFIX + "-validation" | ||
DATA_FORMAT = "TEXT" | ||
INPUT_PATHS = ["gs://path/to/input/file.json", | ||
"gs://path/to/input/file2.json", | ||
"gs://path/to/input/file3.json"] | ||
PREDICTION_PATH = "gs://path/to/output/predictions.json" | ||
BATCH_PREDICTION_JOB_ID = "test-batch-prediction-job-id" | ||
PROJECT_ID = "test-project-id" | ||
REGION = "test-region" | ||
DATAFLOW_OPTIONS = { | ||
"project": "my-gcp-project", | ||
"zone": "us-central1-f", | ||
"stagingLocation": "gs://bucket/tmp/dataflow/staging/" | ||
} | ||
MODEL_URI = "gs://path/to/model/model" | ||
MODEL_NAME = "test-model-name" | ||
VERSION_NAME = "test-version-name" | ||
DAG_DEFAULT_ARGS = { | ||
"project_id": PROJECT_ID, | ||
"region": REGION, | ||
"model_name": MODEL_NAME, | ||
"version_name": VERSION_NAME, | ||
"dataflow_default_options": DATAFLOW_OPTIONS | ||
} | ||
TEST_DAG = DAG(dag_id="test-dag-id", start_date=datetime(2000, 1, 1), default_args=DAG_DEFAULT_ARGS) | ||
|
||
|
||
def get_metric_fn_and_keys(): | ||
import math | ||
|
||
def error_and_squared_error(inst): | ||
label = float(inst['input_label']) | ||
classes = float(inst['classes']) | ||
err = abs(classes - label) | ||
squared_err = math.pow(classes - label, 2) | ||
return err, squared_err | ||
|
||
return error_and_squared_error, ['err', 'mse'] | ||
|
||
|
||
METRIC_FN, METRIC_KEYS = get_metric_fn_and_keys() | ||
METRIC_FN_ENCODED = base64.b64encode(dill.dumps(METRIC_FN, recurse=True)).decode() | ||
METRIC_KEYS_EXPECTED = ','.join(METRIC_KEYS) | ||
|
||
|
||
def validate_err_and_count(summary): | ||
if summary['err'] > 0.2: | ||
raise ValueError('Too high err>0.2; summary=%s' % summary) | ||
if summary['mse'] > 0.05: | ||
raise ValueError('Too high mse>0.05; summary=%s' % summary) | ||
if summary['count'] < 1000: | ||
raise ValueError('Too few instances<1000; summary=%s' % summary) | ||
return summary | ||
|
||
|
||
class TestMlengineOperatorUtils(unittest.TestCase): | ||
@mock.patch.object(PythonOperator, "set_upstream") | ||
@mock.patch.object(DataflowCreatePythonJobOperator, "set_upstream") | ||
def test_create_evaluate_ops(self, mock_dataflow, mock_python): | ||
result = create_evaluate_ops(task_prefix=TASK_PREFIX, | ||
data_format=DATA_FORMAT, | ||
input_paths=INPUT_PATHS, | ||
prediction_path=PREDICTION_PATH, | ||
metric_fn_and_keys=get_metric_fn_and_keys(), | ||
validate_fn=validate_err_and_count, | ||
batch_prediction_job_id=BATCH_PREDICTION_JOB_ID, | ||
project_id=PROJECT_ID, | ||
region=REGION, | ||
dataflow_options=DATAFLOW_OPTIONS, | ||
model_uri=MODEL_URI | ||
) | ||
|
||
evaluate_prediction, evaluate_summary, evaluate_validation = result | ||
|
||
mock_dataflow.assert_called_once_with(evaluate_prediction) | ||
mock_python.assert_called_once_with(evaluate_summary) | ||
|
||
self.assertEqual(TASK_PREFIX_PREDICTION, evaluate_prediction.task_id) | ||
self.assertEqual(PROJECT_ID, evaluate_prediction._project_id) | ||
self.assertEqual(BATCH_PREDICTION_JOB_ID, evaluate_prediction._job_id) | ||
self.assertEqual(REGION, evaluate_prediction._region) | ||
self.assertEqual(DATA_FORMAT, evaluate_prediction._data_format) | ||
self.assertEqual(INPUT_PATHS, evaluate_prediction._input_paths) | ||
self.assertEqual(PREDICTION_PATH, evaluate_prediction._output_path) | ||
self.assertEqual(MODEL_URI, evaluate_prediction._uri) | ||
|
||
self.assertEqual(TASK_PREFIX_SUMMARY, evaluate_summary.task_id) | ||
self.assertEqual(DATAFLOW_OPTIONS, evaluate_summary.dataflow_default_options) | ||
self.assertEqual(PREDICTION_PATH, evaluate_summary.options["prediction_path"]) | ||
self.assertEqual(METRIC_FN_ENCODED, evaluate_summary.options["metric_fn_encoded"]) | ||
self.assertEqual(METRIC_KEYS_EXPECTED, evaluate_summary.options["metric_keys"]) | ||
|
||
self.assertEqual(TASK_PREFIX_VALIDATION, evaluate_validation.task_id) | ||
self.assertEqual(PREDICTION_PATH, evaluate_validation.templates_dict["prediction_path"]) | ||
|
||
@mock.patch.object(PythonOperator, "set_upstream") | ||
@mock.patch.object(DataflowCreatePythonJobOperator, "set_upstream") | ||
def test_create_evaluate_ops_model_and_version_name(self, mock_dataflow, mock_python): | ||
result = create_evaluate_ops(task_prefix=TASK_PREFIX, | ||
data_format=DATA_FORMAT, | ||
input_paths=INPUT_PATHS, | ||
prediction_path=PREDICTION_PATH, | ||
metric_fn_and_keys=get_metric_fn_and_keys(), | ||
validate_fn=validate_err_and_count, | ||
batch_prediction_job_id=BATCH_PREDICTION_JOB_ID, | ||
project_id=PROJECT_ID, | ||
region=REGION, | ||
dataflow_options=DATAFLOW_OPTIONS, | ||
model_name=MODEL_NAME, | ||
version_name=VERSION_NAME | ||
) | ||
|
||
evaluate_prediction, evaluate_summary, evaluate_validation = result | ||
|
||
mock_dataflow.assert_called_once_with(evaluate_prediction) | ||
mock_python.assert_called_once_with(evaluate_summary) | ||
|
||
self.assertEqual(TASK_PREFIX_PREDICTION, evaluate_prediction.task_id) | ||
self.assertEqual(PROJECT_ID, evaluate_prediction._project_id) | ||
self.assertEqual(BATCH_PREDICTION_JOB_ID, evaluate_prediction._job_id) | ||
self.assertEqual(REGION, evaluate_prediction._region) | ||
self.assertEqual(DATA_FORMAT, evaluate_prediction._data_format) | ||
self.assertEqual(INPUT_PATHS, evaluate_prediction._input_paths) | ||
self.assertEqual(PREDICTION_PATH, evaluate_prediction._output_path) | ||
self.assertEqual(MODEL_NAME, evaluate_prediction._model_name) | ||
self.assertEqual(VERSION_NAME, evaluate_prediction._version_name) | ||
|
||
self.assertEqual(TASK_PREFIX_SUMMARY, evaluate_summary.task_id) | ||
self.assertEqual(DATAFLOW_OPTIONS, evaluate_summary.dataflow_default_options) | ||
self.assertEqual(PREDICTION_PATH, evaluate_summary.options["prediction_path"]) | ||
self.assertEqual(METRIC_FN_ENCODED, evaluate_summary.options["metric_fn_encoded"]) | ||
self.assertEqual(METRIC_KEYS_EXPECTED, evaluate_summary.options["metric_keys"]) | ||
|
||
self.assertEqual(TASK_PREFIX_VALIDATION, evaluate_validation.task_id) | ||
self.assertEqual(PREDICTION_PATH, evaluate_validation.templates_dict["prediction_path"]) | ||
|
||
@mock.patch.object(PythonOperator, "set_upstream") | ||
@mock.patch.object(DataflowCreatePythonJobOperator, "set_upstream") | ||
def test_create_evaluate_ops_dag(self, mock_dataflow, mock_python): | ||
result = create_evaluate_ops(task_prefix=TASK_PREFIX, | ||
data_format=DATA_FORMAT, | ||
input_paths=INPUT_PATHS, | ||
prediction_path=PREDICTION_PATH, | ||
metric_fn_and_keys=get_metric_fn_and_keys(), | ||
validate_fn=validate_err_and_count, | ||
batch_prediction_job_id=BATCH_PREDICTION_JOB_ID, | ||
dag=TEST_DAG | ||
) | ||
|
||
evaluate_prediction, evaluate_summary, evaluate_validation = result | ||
|
||
mock_dataflow.assert_called_once_with(evaluate_prediction) | ||
mock_python.assert_called_once_with(evaluate_summary) | ||
|
||
self.assertEqual(TASK_PREFIX_PREDICTION, evaluate_prediction.task_id) | ||
self.assertEqual(PROJECT_ID, evaluate_prediction._project_id) | ||
self.assertEqual(BATCH_PREDICTION_JOB_ID, evaluate_prediction._job_id) | ||
self.assertEqual(REGION, evaluate_prediction._region) | ||
self.assertEqual(DATA_FORMAT, evaluate_prediction._data_format) | ||
self.assertEqual(INPUT_PATHS, evaluate_prediction._input_paths) | ||
self.assertEqual(PREDICTION_PATH, evaluate_prediction._output_path) | ||
self.assertEqual(MODEL_NAME, evaluate_prediction._model_name) | ||
self.assertEqual(VERSION_NAME, evaluate_prediction._version_name) | ||
|
||
self.assertEqual(TASK_PREFIX_SUMMARY, evaluate_summary.task_id) | ||
self.assertEqual(DATAFLOW_OPTIONS, evaluate_summary.dataflow_default_options) | ||
self.assertEqual(PREDICTION_PATH, evaluate_summary.options["prediction_path"]) | ||
self.assertEqual(METRIC_FN_ENCODED, evaluate_summary.options["metric_fn_encoded"]) | ||
self.assertEqual(METRIC_KEYS_EXPECTED, evaluate_summary.options["metric_keys"]) | ||
|
||
self.assertEqual(TASK_PREFIX_VALIDATION, evaluate_validation.task_id) | ||
self.assertEqual(PREDICTION_PATH, evaluate_validation.templates_dict["prediction_path"]) | ||
|
||
@mock.patch.object(GCSHook, "download") | ||
@mock.patch.object(PythonOperator, "set_upstream") | ||
@mock.patch.object(DataflowCreatePythonJobOperator, "set_upstream") | ||
def test_apply_validate_fn(self, mock_dataflow, mock_python, mock_download): | ||
result = create_evaluate_ops(task_prefix=TASK_PREFIX, | ||
data_format=DATA_FORMAT, | ||
input_paths=INPUT_PATHS, | ||
prediction_path=PREDICTION_PATH, | ||
metric_fn_and_keys=get_metric_fn_and_keys(), | ||
validate_fn=validate_err_and_count, | ||
batch_prediction_job_id=BATCH_PREDICTION_JOB_ID, | ||
project_id=PROJECT_ID, | ||
region=REGION, | ||
dataflow_options=DATAFLOW_OPTIONS, | ||
model_uri=MODEL_URI | ||
) | ||
|
||
_, _, evaluate_validation = result | ||
|
||
mock_download.return_value = json.dumps({ | ||
"err": 0.3, | ||
"mse": 0.04, | ||
"count": 1100 | ||
}) | ||
templates_dict = {"prediction_path": PREDICTION_PATH} | ||
with self.assertRaises(ValueError) as context: | ||
evaluate_validation.python_callable(templates_dict=templates_dict) | ||
|
||
self.assertEqual("Too high err>0.2; summary={'err': 0.3, 'mse': 0.04, 'count': 1100}", | ||
str(context.exception)) | ||
mock_download.assert_called_once_with("path", "to/output/predictions.json/prediction.summary.json") | ||
|
||
invalid_prediction_paths = ["://path/to/output/predictions.json", "gs://", ""] | ||
|
||
for path in invalid_prediction_paths: | ||
templates_dict = {"prediction_path": path} | ||
with self.assertRaises(ValueError) as context: | ||
evaluate_validation.python_callable(templates_dict=templates_dict) | ||
self.assertEqual("Wrong format prediction_path:", str(context.exception)[:29]) | ||
|
||
def test_invalid_task_prefix(self): | ||
invalid_task_prefix_values = ["test-task-prefix&", "~test-task-prefix", "test-task(-prefix"] | ||
|
||
for invalid_task_prefix_value in invalid_task_prefix_values: | ||
with self.assertRaises(AirflowException): | ||
create_evaluate_ops(task_prefix=invalid_task_prefix_value, | ||
data_format=DATA_FORMAT, | ||
input_paths=INPUT_PATHS, | ||
prediction_path=PREDICTION_PATH, | ||
metric_fn_and_keys=get_metric_fn_and_keys(), | ||
validate_fn=validate_err_and_count) | ||
|
||
def test_non_callable_metric_fn(self): | ||
with self.assertRaises(AirflowException): | ||
create_evaluate_ops(task_prefix=TASK_PREFIX, | ||
data_format=DATA_FORMAT, | ||
input_paths=INPUT_PATHS, | ||
prediction_path=PREDICTION_PATH, | ||
metric_fn_and_keys=("error_and_squared_error", ['err', 'mse']), | ||
validate_fn=validate_err_and_count) | ||
|
||
def test_non_callable_validate_fn(self): | ||
with self.assertRaises(AirflowException): | ||
create_evaluate_ops(task_prefix=TASK_PREFIX, | ||
data_format=DATA_FORMAT, | ||
input_paths=INPUT_PATHS, | ||
prediction_path=PREDICTION_PATH, | ||
metric_fn_and_keys=get_metric_fn_and_keys(), | ||
validate_fn="validate_err_and_count") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters