The goal of the project was to create a recommendation system that, for hotel booking data, would be more effective than Amazon's recommender (HR@10 evaluation).
$ git clone [email protected]:korzepadawid/recommender-systems-proj.git && cd recommender-systems-proj
- Create a Conda environment.
$ conda env create --name rs-class-proj-env -f environment.yml
- Activate the virtual environment, you've just created.
$ conda activate rs-class-proj-env
- Run the notebook.
$ jupyter notebook
- NumPy
- Pandas
- scitkitlearn
- hyperopt
Model | Result HR@10 |
---|---|
Linear Regression | 0.244399 |
SVR | 0.242702 |
Ridge Regression | 0.23184 |
Amazon Recommender | 0.222335 |