This is a supplementary matrial for our IROS2023 paper to reproduce the numerical validation experiment.
git clone https://github.com/koide3/caratheodory2
mkdir caratheodory2/build && cd caratheodory2/build
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j
cd build
./caratheodory_test
N=30000
k=64
M=256
|g|=206 time=7.62872[msec]
|g|=209 time=7.69499[msec]
|g|=206 time=7.63177[msec]
...
|g|=208 time=7.60994[msec]
|g|=207 time=7.65339[msec]
|g|=206 time=7.61943[msec]
max_error=3.27418e-11
/**
* @brief Fast-Caratheodory-Matrix (Algorithm 2 in [Maalouf, NeurIPS2019])
* This function finds a weighted subset of P such that P^T*P = S^T*S
* @param P [in] Input matrix R^{N x D}
* @param k [in] Number of clusters for Fast-Caratheodory
* @param indices [out] Indices of selected rows in P
* @param w [out] Weights for the selected rows
* @param S [out] Weighted subset of P (= w * P[indices])
* @param N [in] Target output size
*/
void fast_caratheodory_matrix(const Eigen::MatrixXd& P, int k, Eigen::VectorXi& indices, Eigen::VectorXd& w, Eigen::MatrixXd& S, int N);
/**
* @brief Fast-Caratheodory-Quadratic (Algorithm 3 in [Koide, IROS2023]).
* This function finds a weighted subset of input residuals that exactly recovers the original quadratic error function.
*
* i.e.,
* H = H_, b = b_, c = c_,
* where,
* H = J^T * J, b = J^T * e, c = e^T * e,
* H_ = S^T * W * S, b_ = S^T * W * q, c_ = q^T * W * q,
* S = J[indices], q = e[indices], W = w.asDiagonal()
*
* @param J [in] Jacobian matrix R^{N x 6}
* @param e [in] Residual vector R^N
* @param k [in] Number of clusters for Fast-Caratheodory (e.g., 64)
* @param indices [out] Indices of selected residuals
* @param w [out] Weights for the selected residuals
* @param target_N [in] Target output size (must be >= 29)
*/
void fast_caratheodory_quadratic(const Eigen::Matrix<double, -1, 6>& J, const Eigen::VectorXd& e, int k, Eigen::VectorXi& indices, Eigen::VectorXd& w, int target_N);
Kenji Koide, Shuji Oishi, Masashi Yokozuka, and Atsuhiko Banno, Exact Point Cloud Downsampling for Fast and Accurate Global Trajectory Optimization, IROS2023, [Paper]
Kenji Koide ([email protected]), AIST, Japan