Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020)
Our code is origin from UA-MT
You can find paper in Arxiv.
- Clone the repo:
git clone https://github.com/kleinzcy/SASSnet.git
cd SASSnet
-
Put the data in
data/2018LA_Seg_Training Set
. -
Train the model
cd code
# for 16 label
python train_gan_sdfloss.py --gpu 0 --label 16 --consistency 0.01 --exp model_name
# for 8 label
python train_gan_sdfloss.py --gpu 0 --label 8 --consistency 0.015 --exp model_name
Params are the best setting in our experiment.
- Test the model
python test_LA.py --model model_name --gpu 0 --iter 6000
Our best model are saved in model dir.
If you find our work is useful for you, please cite us.