Skip to content

Commit

Permalink
Allow boundary condition on edges/vertices (Ferrite-FEM#343)
Browse files Browse the repository at this point in the history
* Add EdgeIndex and VertexIndex in grid (subtype of <: BoundaryIndex)

* Generalize Constrainthandler and BCValues to work with EdgeIndex and VertexIndex

* Add linear_shell example
  • Loading branch information
lijas authored Apr 11, 2021
1 parent bc4e20f commit 4913364
Show file tree
Hide file tree
Showing 16 changed files with 594 additions and 115 deletions.
3 changes: 2 additions & 1 deletion docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,8 @@ GENERATEDEXAMPLES = [joinpath("examples", f) for f in (
"threaded_assembly.md",
"plasticity.md",
"transient_heat_equation.md",
"landau.md"
"landau.md",
"linear_shell.md"
)]

# Build documentation.
Expand Down
314 changes: 314 additions & 0 deletions docs/src/literate/linear_shell.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,314 @@
# # Linear shell
#
# ![](linear_shell.png)
#-
# ## Introduction
#
# In this example we show how shell elements can be analyzed in Ferrite.jl. The shell implemented here comes from the book
# "The finite elment method - Linear static and dynamic finite element analysis" by Hughes (1987), and a brief description of it is
# given at the end of this tutorial. The first part of the tutorial explains how to set up the problem.

# ## Setting up the problem
using Ferrite
using ForwardDiff

function main() #wrap everything in a function...

# First we generate a flat rectangular mesh. There is currently no built-in function for generating
# shell meshes in Ferrite, so we have to create our own simple mesh generator (see the
# function `generate_shell_grid` further down in this file).
#+
nels = (10,10)
size = (10.0, 10.0)
grid = generate_shell_grid(nels, size)

# Here we define the bi-linear interpolation used for the geometrical description of the shell.
# We also create two quadrature rules for the in-plane and out-of-plane directions. Note that we use
# under integration for the inplane integration, to avoid shear locking.
#+
ip = Lagrange{2,RefCube,1}()
qr_inplane = QuadratureRule{2,RefCube}(1)
qr_ooplane = QuadratureRule{1,RefCube}(2)
cv = CellScalarValues(qr_inplane, ip)

# Next we distribute displacement dofs,`:u = (x,y,z)` and rotational dofs, `:θ = (θ₁, θ₂)`.
#+
dh = DofHandler(grid)
push!(dh, :u, 3, ip)
push!(dh, , 2, ip)
close!(dh)

# In order to apply our boundary conditions, we first need to create some edge- and vertex-sets. This
# is done with `addedgeset!` and `addvertexset!` (similar to `addfaceset!`)
#+
addedgeset!(grid, "left", (x) -> x[1] 0.0)
addedgeset!(grid, "right", (x) -> x[1] size[1])
addvertexset!(grid, "corner", (x) -> x[1] 0.0 && x[2] 0.0 && x[3] 0.0)

# Here we define the boundary conditions. On the left edge, we lock the displacements in the x- and z- directions, and all the rotations.
#+
ch = ConstraintHandler(dh)
add!(ch, Dirichlet(:u, getedgeset(grid, "left"), (x, t) -> (0.0, 0.0), [1,3]) )
add!(ch, Dirichlet(, getedgeset(grid, "left"), (x, t) -> (0.0, 0.0), [1,2]) )

# On the right edge, we also lock the displacements in the x- and z- directions, but apply a precribed roation.
#+
add!(ch, Dirichlet(:u, getedgeset(grid, "right"), (x, t) -> (0.0, 0.0), [1,3]) )
add!(ch, Dirichlet(, getedgeset(grid, "right"), (x, t) -> (0.0, pi/10), [1,2]) )

# In order to not get rigid body motion, we lock the y-displacement in one fo the corners.
#+
add!(ch, Dirichlet(, getvertexset(grid, "corner"), (x, t) -> (0.0), [2]) )

close!(ch)
update!(ch, 0.0)

# Next we define relevant data for the shell, such as shear correction factor and stiffness matrix for the material.
# In this linear shell, plane stress is assumed, ie $\\sigma_{zz} = 0 $. Therefor, the stiffness matrix is 5x5 (opposed to the normal 6x6).
#+
κ = 5/6 # Shear correction factor
E = 210.0
ν = 0.3
a = (1-ν)/2
C = E/(1-ν^2) * [1 ν 0 0 0;
ν 1 0 0 0;
0 0 a*κ 0 0;
0 0 0 a*κ 0;
0 0 0 0 a*κ]


data = (thickness = 1.0, C = C); #Named tuple

# We now assemble the problem in standard finite element fashion
#+
nnodes = getnbasefunctions(ip)
ndofs_shell = ndofs_per_cell(dh)

K = create_sparsity_pattern(dh)
f = zeros(Float64, ndofs(dh))

ke = zeros(ndofs_shell, ndofs_shell)
fe = zeros(ndofs_shell)

celldofs = zeros(Int, ndofs_shell)
cellcoords = zeros(Vec{3,Float64}, nnodes)

assembler = start_assemble(K, f)
for cellid in 1:getncells(grid)
fill!(ke, 0.0)

celldofs!(celldofs, dh, cellid)
getcoordinates!(cellcoords, grid, cellid)

#Call the element routine
integrate_shell!(ke, cv, qr_ooplane, cellcoords, data)

assemble!(assembler, celldofs, fe, ke)
end

# Apply BC and solve.
#+
apply!(K, f, ch)
a = K\f

# Output results.
#+
vtk_grid("linear_shell", dh) do vtk
vtk_point_data(vtk, dh, a)
end

end; #end main functions

# Below is the function that creates the shell mesh. It simply generates a 2d-quadrature mesh, and appends
# a third coordinate (z-direction) to the node-positions.
function generate_shell_grid(nels, size)
_grid = generate_grid(Quadrilateral, nels, Vec((0.0,0.0)), Vec(size))
nodes = [(n.x[1], n.x[2], 0.0) |> Vec{3} |> Node for n in _grid.nodes]
cells = [Quadrilateral3D(cell.nodes) for cell in _grid.cells]

grid = Grid(cells, nodes)

return grid
end;

# ## The shell element
#
# The shell presented here comes from the book "The finite elment method - Linear static and dynamic finite element analysis" by Hughes (1987).
# The shell is a so called degenerate shell element, meaning it is based on a continuum element.
# A brief describtion of the shell is given here.

#md # !!! note
#md # This element might experience various locking phenomenas, and should only be seen as a proof of concept.

# ##### Fiber coordinate system
# The element uses two coordinate systems. The first coordianate system, called the fiber system, is created for each
# element node, and is used as a reference frame for the rotations. The function below implements an algorthim that return the
# fiber directions, $\boldsymbol{e}^{f}_{a1}$, $\boldsymbol{e}^{f}_{a2}$ and $\boldsymbol{e}^{f}_{a3}$, at each node $a$.
function fiber_coordsys(Ps::Vector{Vec{3,Float64}})

ef1 = Vec{3,Float64}[]
ef2 = Vec{3,Float64}[]
ef3 = Vec{3,Float64}[]
for P in Ps
a = abs.(P)
j = 1
if a[1] > a[3]; a[3] = a[1]; j = 2; end
if a[2] > a[3]; j = 3; end

e3 = P
e2 = Tensors.cross(P, basevec(Vec{3}, j))
e2 /= norm(e2)
e1 = Tensors.cross(e2, P)

push!(ef1, e1)
push!(ef2, e2)
push!(ef3, e3)
end
return ef1, ef2, ef3

end;

# ##### Lamina coordinate system
# The second coordinate system is the so called Lamina Coordinate system. It is
# created for each integration point, and is defined to be tangent to the
# mid-surface. It is in this system that we enforce that plane stress assumption,
# i.e. $\sigma_{zz} = 0$. The function below returns the rotation matrix, $\boldsymbol{q}$, for this coordinate system.
function lamina_coordsys(dNdξ, ζ, x, p, h)

e1 = zero(Vec{3})
e2 = zero(Vec{3})

for i in 1:length(dNdξ)
e1 += dNdξ[i][1] * x[i] + 0.5*h*ζ * dNdξ[i][1] * p[i]
e2 += dNdξ[i][2] * x[i] + 0.5*h*ζ * dNdξ[i][1] * p[i]
end

e1 /= norm(e1)
e2 /= norm(e2)

ez = Tensors.cross(e1,e2)
ez /= norm(ez)

a = 0.5*(e1 + e2)
a /= norm(a)

b = Tensors.cross(ez,a)
b /= norm(b)

ex = sqrt(2)/2 * (a - b)
ey = sqrt(2)/2 * (a + b)

return Tensor{2,3}(hcat(ex,ey,ez))
end;


# ##### Geometrical description
# A material point in the shell is defined as
# ```math
# \boldsymbol x(\xi, \eta, \zeta) = \sum_{a=1}^{N_{\text{nodes}}} N_a(\xi, \eta) \boldsymbol{\bar{x}}_{a} + ζ \frac{h}{2} \boldsymbol{\bar{p}_a}
# ```
# where $\boldsymbol{\bar{x}}_{a}$ are nodal positions on the mid-surface, and $\boldsymbol{\bar{p}_a}$ is an vector that defines the fiber direction
# on the reference surface. $N_a$ arethe shape functions.
#
# Based on the defintion of the position vector, we create an function for obtaining the Jacobian-matrix,
# ```math
# J_{ij} = \frac{\partial x_i}{\partial \xi_j},
# ```
function getjacobian(q, N, dNdξ, ζ, X, p, h)

J = zeros(3,3)
for a in 1:length(N)
for i in 1:3, j in 1:3
_dNdξ = (j==3) ? 0.0 : dNdξ[a][j]
_dζdξ = (j==3) ? 1.0 : 0.0
_N = N[a]

J[i,j] += _dNdξ * X[a][i] + (_dNdξ*ζ + _N*_dζdξ) * h/2 * p[a][i]
end
end

return (q' * J) |> Tensor{2,3,Float64}
end;

# ##### Strains
# Small deformation is assumed,
# ```math
# \varepsilon_{ij}= \frac{1}{2}(\frac{\partial u_{i}}{\partial x_j} + \frac{\partial u_{j}}{\partial x_i})
# ```
# The displacement field is calculated as:
# ```math
# \boldsymbol u = \sum_{a=1}^{N_{\text{nodes}}} N_a \bar{\boldsymbol u}_{a} +
# N_a ζ\frac{h}{2}(\theta_{a2} \boldsymbol e^{f}_{a1} - \theta_{a1} \boldsymbol e^{f}_{a2})
#
# ```
# The gradient of the displacement (in the lamina coordinate system), then becomes:
# ```math
# \frac{\partial u_{i}}{\partial x_j} = \sum_{m=1}^3 q_{im} \sum_{a=1}^{N_{\text{nodes}}} \frac{\partial N_a}{\partial x_j} \bar{u}_{am} +
# \frac{\partial(N_a ζ)}{\partial x_j} \frac{h}{2} (\theta_{a2} e^{f}_{am1} - \theta_{a1} e^{f}_{am2})
# ```
function strain(dofvec::Vector{T}, N, dNdx, ζ, dζdx, q, ef1, ef2, h) where T

u = reinterpret(Vec{3,T}, dofvec[1:12])
θ = reinterpret(Vec{2,T}, dofvec[13:20])

dudx = zeros(T, 3, 3)
for m in 1:3, j in 1:3
for a in 1:length(N)
dudx[m,j] += dNdx[a][j] * u[a][m] + h/2 * (dNdx[a][j]*ζ + N[a]*dζdx[j]) * (θ[a][2]*ef1[a][m] - θ[a][1]*ef2[a][m])
end
end

dudx = q*dudx
ε = [dudx[1,1], dudx[2,2], dudx[1,2]+dudx[2,1], dudx[2,3]+dudx[3,2], dudx[1,3]+dudx[3,1]]
return ε

end;

# ##### Main element routine
# Below is the main routine that calculates the stiffness matrix of the shell element.
# Since it is a so called degenerate shell element, the code is similar to that for an standard continuum element.
function integrate_shell!(ke, cv, qr_ooplane, X, data)
nnodes = getnbasefunctions(cv)
ndofs = nnodes*5
h = data.thickness

#Create the directors in each node.
#Note: For a more general case, the directors should
#be input parameters for the element routine.
p = zeros(Vec{3}, nnodes)
for i in 1:nnodes
a = Vec{3}((0.0, 0.0, 1.0))
p[i] = a/norm(a)
end

ef1, ef2, ef3 = fiber_coordsys(p)

for iqp in 1:getnquadpoints(cv)

dNdξ = cv.dNdξ[:,iqp]
N = cv.N[:,iqp]

for oqp in 1:length(qr_ooplane.weights)

ζ = qr_ooplane.points[oqp][1]

q = lamina_coordsys(dNdξ, ζ, X, p, h)
J = getjacobian(q, N, dNdξ, ζ, X, p, h)
Jinv = inv(J)

dζdx = Vec{3}((0.0, 0.0, 1.0)) Jinv
dNdx = [Vec{3}((dNdξ[i][1], dNdξ[i][2], 0.0)) Jinv for i in 1:nnodes]


#For simplicity, use automatic differentiation to construct the B-matrix from the strain.
B = ForwardDiff.jacobian(
(a) -> strain(a, N, dNdx, ζ, dζdx, q, ef1, ef2, h), zeros(Float64, ndofs) )

dV = det(J) * cv.qr_weights[iqp] * qr_ooplane.weights[oqp]
ke .+= B'*data.C*B * dV
end
end
end;

# Run everything:
main()
Binary file added docs/src/literate/linear_shell.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit 4913364

Please sign in to comment.