forked from yezhengSTAT/mHiC
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy paths5_prior.py
1046 lines (932 loc) · 43 KB
/
s5_prior.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
## mHiC
## Modified based on Fit-hi-c.py programmed by Ferhat Ay and Arya Kaul
## Modified to only fit the spline under null hypothesis: Ye Zheng
## March 2nd, 2017
## Updated in June 2018
## Contact: [email protected]
import sys
import math
import time
import numpy as np
from scipy import *
from scipy.interpolate import Rbf, UnivariateSpline
from scipy import optimize
import scipy.special as scsp
import bisect
import gzip
from scipy.stats.mstats import mquantiles
from scipy import stats
import myStats
import myUtils
from sklearn.isotonic import IsotonicRegression
from sortedcontainers import SortedList
import os
import argparse
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter, FormatStrFormatter, MaxNLocator
from pylab import *
versionStr = "You are using fithic version 2.0.0"
def parse_args(args):
parser = argparse.ArgumentParser(description="Check the help flag")
parser.add_argument("-i", "--interactions", dest="intersfile",\
help="REQUIRED: interactions between fragment pairs are \
read from INTERSFILE", required=True)
parser.add_argument("-f", "--fragments", dest="fragsfile", \
help="REQUIRED: midpoints (or start indices) \
of the fragments are read from FRAGSFILE",\
required=True)
parser.add_argument("-o", "--outdir", dest="outdir", \
help="REQUIRED: where the output files\
will be written", required=True)
parser.add_argument("-r", "--resolution", dest="resolution", type=int,
help="REQUIRED: If the files are fixed size, please \
supply the resolution of the dataset here; otherwise, \
please use a value of 0 if the data is not fixed size." \
, required=True)
parser.add_argument("-t", "--biases", dest="biasfile",\
help="RECOMMENDED: biases calculated by\
ICE or KR norm for each locus are read from BIASFILE",\
required=False)
parser.add_argument("-p", "--passes", dest="noOfPasses",type=int,\
help="OPTIONAL: number of spline passes to run\
Default is 1",
required=False)
parser.add_argument("-b", "--noOfBins", dest="noOfBins", type=int, \
help="OPTIONAL: number of equal-occupancy (count) \
bins. Default is 100", required=False)
parser.add_argument("-m", "--mappabilityThres", dest="mappabilityThreshold",\
type=int, help="OPTIONAL: minimum number of hits per \
locus that has to exist to call it mappable. DEFAULT is 1.",\
required=False)
parser.add_argument("-l", "--lib", dest="libname", help="OPTIONAL: Name of the\
library that is analyzed to be used for name of file prefixes \
. DEFAULT is fithic",
required=False)
parser.add_argument("-U", "--upperbound", dest="distUpThres", type=int,
help="OPTIONAL: upper bound on the intra-chromosomal \
distance range (unit: base pairs). DEFAULT no limit. \
STRONGLY suggested to have a limit for large genomes,\
such as human/mouse. ex. '1000000, 5000000, etc.'",
required=False)
parser.add_argument("-L", "--lowerbound", dest="distLowThres", type=int,
help="OPTIONAL: lower bound on the intra-chromosomal \
distance range (unit: base pairs). DEFAULT no limit. \
Suggested limit is 2x the resolution of the input files",
required=False)
parser.add_argument("-v", "--visual", action="store_true", dest="visual",\
help="OPTIONAL: use this flag for generating plots. \
DEFAULT is False.", required=False)
parser.add_argument("-x", "--contactType", dest="contactType",
help="OPTIONAL: use this flag to determine which chromosomal \
regions to study (intraOnly, interOnly, All) \
DEFAULT is intraOnly", required=False)
parser.add_argument("-tL", "--biasLowerBound", dest="biasLowerBound",\
help="OPTIONAL: this flag is used to determine the lower bound\
of bias values to discard. DEFAULT is 0.5"\
, required=False)
parser.add_argument("-tU", "--biasUpperBound", dest="biasUpperBound",\
help="OPTIONAL: this flag is used to determine the upper bound\
of bias values to discard. DEFAULT is 2"\
, required=False)
parser.add_argument("-V", "--version", action="version",version=versionStr)
return parser.parse_args()
def main():
args = parse_args(sys.argv[1:])
print("\n")
print("GIVEN FIT-HI-C ARGUMENTS")
print("=========================")
##PARSE REQUIRED ARGUMENTS##
fragsFile = args.fragsfile
if os.path.exists(fragsFile):
print("Reading fragments file from: %s" % fragsFile)
else:
print("Fragment file not found")
sys.exit(2)
try:
fragsF = open(fragsFile, 'r')
fragsF.readline()
except:
print("Fragments file is not gzipped. Exiting now...")
sys.exit(2)
contactCountsFile = args.intersfile
if os.path.isfile(contactCountsFile):
print("Reading interactions file from: %s" % contactCountsFile)
else:
print("Interaction file not found")
sys.exit(2)
try:
contactCountsF = open(contactCountsFile, 'r')
contactCountsF.readline()
except:
print("Interactions file is not gzipped. Exiting now...")
outputPath = args.outdir
if not os.path.isdir(outputPath):
os.makedirs(outputPath)
print("Output path created %s" % outputPath)
else:
print("Output path being used from %s" % outputPath)
resolution = args.resolution
if args.resolution == 0:
print("Fixed size data not being used.")
elif args.resolution > 0:
print("Fixed size option detected... Fast version of FitHiC will be used")
print("Resolution is %s kb" % (resolution/1000))
else:
print("INVALID RESOLUTION ARGUMENT DETECTED")
print("Please make sure the given resolution is a positive number greater than zero")
print("User-given resolution: %s" % resolution)
sys.exit(2)
##PARSE OPTIONAL ARGUMENTS##
if args.biasfile is not None:
if os.path.isfile(args.biasfile):
print("Reading bias file from: %s" % args.biasfile)
else:
print("Bias file not found")
sys.exit(2)
else:
print("No bias file")
biasFile = args.biasfile
noOfPasses = 1
if args.noOfPasses:
noOfPasses = args.noOfPasses
print("The number of spline passes is %s" % noOfPasses)
noOfBins = 100
if args.noOfBins:
noOfBins = args.noOfBins
print("The number of bins is %s" % noOfBins)
global mappThres
mappThres = 1
if args.mappabilityThreshold:
mappThres = args.mappabilityThreshold
print("The number of reads required to consider an interaction is %s" % mappThres)
libName = "FitHiC"
if args.libname:
libName = args.libname
print("The name of the library for outputted files will be %s" % libName)
global distLowThres
global distUpThres
distUpThres = float("inf")
distLowThres = 0
if args.distUpThres:
distUpThres = args.distUpThres
if args.distLowThres:
distLowThres = args.distLowThres
print("Upper Distance threshold is %s" % distUpThres)
print("Lower Distance threshold is %s" % distLowThres)
global visual
visual = False
if args.visual:
#### matplotlib fontsize settings
visual = True
print("Graphs will be outputted")
global interOnly
global allReg
chromosome_region=args.contactType
if chromosome_region==None:
chromosome_region='intraOnly'
interOnly=False
allReg=False
if chromosome_region == "All":
print("All genomic regions will be analyzed")
allReg=True
elif chromosome_region == "interOnly":
print("Only inter-chromosomal regions will be analyzed")
interOnly=True
elif chromosome_region == "intraOnly":
print("Only intra-chromosomal regions will be analyzed")
interOnly=False
allReg=False
else:
print("Invalid Option. Only options are 'All', 'interOnly', or 'intraOnly'")
sys.exit(2)
global biasLowerBound
global biasUpperBound
biasLowerBound = 0.5
biasUpperBound = 2
if args.biasLowerBound:
biasLowerBound = args.biasLowerBound
if args.biasUpperBound:
biasUpperBound = args.biasUpperBound
if biasLowerBound > biasUpperBound:
print("Invalid Option. Bias lower bound is greater than bias upper bound. Please fix.")
sys.exit(2)
print("Lower bound of bias values is %s" % biasLowerBound)
print("Upper bound of bias values is %s" % biasUpperBound)
print("All arguments processed. Running FitHiC now...")
print("=========================")
print("\n")
#########################PARSING COMPLETE############################################
possibleIntraInRangeCount=0 # count of all possible in range intra-chr fragpairs
observedIntraInRangeCount=0 # count of obs. in range intra-chr frags based on intxn file
observedIntraInRangeSum=0 # sum of all observed intra-chr read counts in range
possibleIntraAllCount=0 # Same as above, but without range restriction
observedIntraAllCount=0
observedIntraAllSum=0
possibleInterAllCount=0 # Same as above, note that the notion of distance thresholds
# does not apply for interchr intxns
observedInterAllCount=0
observedInterAllSum=0
global baselineIntraChrProb
baselineIntraChrProb=0 # 1.0/possibleIntraAllCount
global interChrProb
interChrProb=0 # 1.0/possibleInterAllCount
minObservedGenomicDist=float("inf")
maxObservedGenomicDist=0
maxPossibleGenomicDist=0
#distScaling just avoids overflow - but is necessary for large genomes
global distScaling
distScaling=1000000.0 #RUNBY
global toKb
global toMb
global toProb
toKb=10**-3
toMb=10**-6
toProb=10**5
#intermediate values outputted here
global logfile
logfile = os.path.join(outputPath, libName+".fithic.log")
##maindic will be generated first using the interactions file only
mainDic={} # given a distance this dictionary will return [Npairs,TotalContactCount] for only those interactions present in the interactions file
(mainDic,observedInterAllSum,observedIntraAllSum,observedIntraInRangeSum) = read_Interactions(contactCountsFile, biasFile)
binStats = makeBinsFromInteractions(mainDic, noOfBins, observedIntraInRangeSum)
#Enumerate (fast version) or generate (otherwise) all possible pairs of fragments within the range of interest.
(binStats,noOfFrags, maxPossibleGenomicDist, possibleIntraInRangeCount, possibleInterAllCount, interChrProb, baselineIntraChrProb)= generate_FragPairs(binStats, fragsFile, resolution)
#read and parse bias values for each locus from ICE or KR normalization output
if biasFile:
biasDic = read_biases(biasFile)
else:
biasDic = 0
#bin the data in desired number of bins, and for each bin, calculate the average genomic distance and average contact probability
(x,y,yerr)= calculateProbabilities(mainDic, binStats,resolution,os.path.join(outputPath,libName+".fithic_pass1"), observedIntraInRangeSum)
splinefit1st=time.time()
print("Spline fit Pass 1 starting...")
outliersline = SortedList()
outliersdist = SortedList()
#fit a smooth spline to the bin values, and compute and write p values/q values
splineXinit,splineYinit,residual,outliersline, outliersdist, FDRXinit, FDRYinit= fit_Spline(mainDic,x,y,yerr,contactCountsFile,os.path.join(outputPath,libName+".spline_pass1"),biasDic, outliersline, outliersdist, observedIntraInRangeSum, possibleIntraInRangeCount, possibleInterAllCount, observedIntraAllSum, observedInterAllSum, resolution, 1)
print("Number of outliers is... %s" % len(outliersline))
splinefit1en = time.time()
print("Spline fit Pass 1 completed. Time took %s" % (splinefit1en-splinefit1st))
### DO THE NEXT PASSES IF REQUESTED ###
for i in range(2,1+noOfPasses):
print("\n")
print("\n")
(mainDic,observedInterAllSum,observedIntraAllSum,observedIntraInRangeSum) = read_Interactions(contactCountsFile, biasFile, outliersline)
binStats = makeBinsFromInteractions(mainDic, noOfBins, observedIntraInRangeSum, outliersdist)
(binStats,noOfFrags, maxPossibleGenomicDist, possibleIntraInRangeCount,possibleInterAllCount, interChrProb, baselineIntraChrProb)= generate_FragPairs(binStats, fragsFile, resolution)
(x,y,yerr)= calculateProbabilities(mainDic, binStats,resolution,os.path.join(outputPath,libName+".fithic_pass"+str(i)), observedIntraInRangeSum)
splinefitst=time.time()
print("Spline fit Pass %s starting..." % i)
splineX,splineY,residual,outliersline, outliersdist, FDRX, FDRY= fit_Spline(mainDic,x,y,yerr,contactCountsFile,os.path.join(outputPath,libName+".spline_pass"+str(i)),biasDic, outliersline, outliersdist, observedIntraInRangeSum, possibleIntraInRangeCount, possibleInterAllCount, observedIntraAllSum, observedInterAllSum, resolution, i)
splinefiten = time.time()
print("Spline fit Pass %s completed. Time took %s" % (i,(splinefit1en-splinefit1st)))
if visual:
compare_Spline_FDR(FDRXinit, FDRYinit, FDRX, FDRY, os.path.join(outputPath, libName+".spline_FDR_comparison"),str(i))
compareFits_Spline(splineXinit, splineYinit, splineX, splineY, os.path.join(outputPath,libName+".spline_comparison"), str(i))
## Ye - write out prior
splineOut = open(outputPath + "/s5_prior.mhic" , "w")
if len(splineX) != len(splineY):
print("Error! spline x length does not equal to spline y length!")
sys.exit()
for iter in range(len(splineX)):
if splineY[iter] > 0.0000000000000099999:
splineOut.write("%d" % splineX[iter] + '\t' + '{0:.15f}'.format(splineY[iter]) + '\n')
## Ye -
print("=========================")
print("Fit-Hi-C completed successfully")
print("\n")
##FUNCTIONS START###
def read_Interactions(contactCountsFile, biasFile, outliers=None):
mainDic={}
print("Reading the contact counts file to generate bins...")
startT = time.time()
observedInterAllSum=0 #used
observedIntraAllSum=0 #used
observedInterAllCount=0
observedIntraAllCount=0 #notused
observedIntraInRangeSum=0 #used
observedIntraInRangeCount=0 #notused
minObservedGenomicDist=float('inf') #notused
maxObservedGenomicDist=0 #notused
linectr = 0
outlierposctr = 0
#Loop through every line in the contactCountsFile
with open(contactCountsFile, 'rt') as f:
for lines in f:
if outliers != None and outlierposctr<len(outliers):
if linectr == outliers[outlierposctr]:
linectr+=1
outlierposctr+=1
continue
ch1,mid1,ch2,mid2,contactCount=lines.split()
#create the interaction
contactCount=float(contactCount)
interxn=myUtils.Interaction([ch1, int(mid1), ch2, int(mid2)])
interxn.setCount(contactCount)
interactionType = interxn.getType(distLowThres,distUpThres)
if interactionType=='inter':
observedInterAllSum += interxn.getCount()
observedInterAllCount +=1
else: # any type of intra
observedIntraAllSum +=interxn.getCount()
observedIntraAllCount +=1
if interactionType=='intraInRange':
#interxn.setDistance(interxn.getDistance()+(1000-interxn.getDistance()) % 1000)
minObservedGenomicDist=min(minObservedGenomicDist,interxn.getDistance())
maxObservedGenomicDist=max(maxObservedGenomicDist,interxn.getDistance())
if interxn.getDistance() not in mainDic:
mainDic[interxn.getDistance()] = [0,0]
mainDic[interxn.getDistance()][1]+=interxn.getCount()
observedIntraInRangeSum +=interxn.getCount()
observedIntraInRangeCount +=1
linectr+=1
endT = time.time()
print("Interactions file read. Time took %s" % (endT-startT))
with open(logfile, 'w') as log:
log.write("\n\nInteractions file read successfully\n")
log.write("------------------------------------------------------------------------------------\n")
log.write("Observed, Intra-chr in range: pairs= "+str(observedIntraInRangeCount) +"\t totalCount= "+str(observedIntraInRangeSum)+"\n")
log.write("Observed, Intra-chr all: pairs= "+str(observedIntraAllCount) +"\t totalCount= "+str(observedIntraAllSum)+"\n")
log.write("Observed, Inter-chr all: pairs= "+str(observedInterAllCount) +"\t totalCount= "+str(observedInterAllSum)+"\n")
log.write("Range of observed genomic distances [%s %s]" % (minObservedGenomicDist,maxObservedGenomicDist) + "\n"),
log.write("\n")
return (mainDic,observedInterAllSum,observedIntraAllSum,observedIntraInRangeSum) # from read_Interactions
def makeBinsFromInteractions(mainDic,noOfBins, observedIntraInRangeSum, outliersdist=None):
with open(logfile, 'a') as log:
log.write("Making equal occupancy bins\n")
log.write("------------------------------------------------------------------------------------\n")
noPerBin = observedIntraInRangeSum/noOfBins
log.write("Observed intra-chr read counts in range\t"+repr(observedIntraInRangeSum)+ "\nDesired number of contacts per bin\t" +repr(noPerBin)+",\nNumber of bins\t"+repr(noOfBins)+"\n")
# the following five lists will be the print outputs
interactionTotalForBinTermination=0
n=0 # bin counter so far
totalInteractionCountSoFar=0
distsToGoInAbin=[]
binFull=0
desiredPerBin=(observedIntraInRangeSum)/noOfBins
bins = []
for i in sorted(mainDic.keys()): #everything here is inrange by definition
totalInteractionCountSoFar+=mainDic[i][1]
# if one distance has more than necessary counts to fill a bin
if mainDic[i][1]>=desiredPerBin:
distsToGoInAbin.append(i)
interactionTotalForBinTermination=0
binFull=1
# if adding the next bin will fill the bin
elif interactionTotalForBinTermination+mainDic[i][1] >= desiredPerBin:
distsToGoInAbin.append(i)
interactionTotalForBinTermination=0
binFull=1
# if adding the next bin will not fill the bin
else:
distsToGoInAbin.append(i)
interactionTotalForBinTermination+=mainDic[i][1]
# if bin is already full
if binFull==1:
noOfPairsForBin=0
interactionTotalForBin=0
avgDistance=0
# dynamically update the desiredPerBin after each bin is full
n+=1
if n<noOfBins:
desiredPerBin=1.0*(observedIntraInRangeSum-totalInteractionCountSoFar)/(noOfBins-n)
bins.append(distsToGoInAbin)
interactionTotalForBinTermination=0
binFull=0
distsToGoInAbin=[]
#print(bins)
binStats = {}
for binIdx in range(len(bins)):
##binStats
#0: range of distances in this bin
#1: no. of possible pairs w/in this range of distances
#2: sumoverallContactCounts
#3: Sumoveralldistances in this bin in distScaling vals
#4: avg CC
#5: avg distance
#6: bins
if binIdx == 0:
lb = 0
else:
lb = max(bins[binIdx-1])+1
ub = bins[binIdx][-1]
binStats[binIdx]=[(lb, ub), 0, 0, 0, 0, 0, bins[binIdx], 0]
for dists in bins[binIdx]:
binStats[binIdx][2]+=mainDic[dists][1]
#binStats[binIdx][3]+=(dists/distScaling)
if outliersdist != None:
binTracker = 0
for i in range(len(outliersdist)):
intxnDistance = outliersdist[i]
currBin = binStats[binTracker]
minOfBin = currBin[0][0]
maxOfBin = currBin[0][1]
while not (minOfBin<=intxnDistance<=maxOfBin):
binTracker += 1
if binTracker not in binStats:
binTracker-=1
currBin = binStats[binTracker]
minOfBin = currBin[0][0]
maxOfBin = currBin[0][1]
break
else:
currBin = binStats[binTracker]
minOfBin = currBin[0][0]
maxOfBin = currBin[0][1]
currBin[7]-=1
currBin[1]-=1
with open(logfile, 'a') as log:
log.write("Equal occupancy bins generated\n")
log.write("\n")
return binStats
def generate_FragPairs(binStats, fragsfile, resolution):
if resolution:
with open(logfile, 'a') as log:
log.write("Looping through all possible fragment pairs in-range\n")
log.write("------------------------------------------------------------------------------------\n"),
else:
with open(logfile, 'a') as log:
log.write("Enumerating all possible fragment pairs in-range\n")
log.write("------------------------------------------------------------------------------------\n"),
startT = time.time()
minPossibleGenomicDist = float("inf")
maxPossibleGenomicDist = 0
possibleIntraAllCount = 0
possibleInterAllCount = 0
possibleIntraInRangeCount = 0
interChrProb = 0
baselineIntraChrProb = 0
allFragsDic={}
with open(fragsfile,'rt') as infile:
for line in infile:
words=line.split()
currChr=words[0]
currMid=int(words[2])
currHit=int(words[3])
if currChr not in allFragsDic:
allFragsDic[currChr]=[]
if currHit>=mappThres:
allFragsDic[currChr].append(currMid)
if resolution:
noOfFrags=0
maxFrags={}
for ch in allFragsDic:
maxFrags[ch]=max([int(i)-resolution/2 for i in allFragsDic[ch]])
noOfFrags+=len(allFragsDic[ch])
maxPossibleGenomicDist=max(maxPossibleGenomicDist,maxFrags[ch])
for ch in sorted(allFragsDic.keys()):
maxFrag=maxFrags[ch]
n=len(allFragsDic[ch])
d=0
binTracker = 0
possibleIntraInRangeCountPerChr = 0
for intxnDistance in range(0,int(maxFrag+1),resolution):
npairs = n-d
d+=1
if myUtils.in_range_check(intxnDistance,distLowThres,distUpThres):
minPossibleGenomicDist = min(minPossibleGenomicDist, intxnDistance)
possibleIntraInRangeCountPerChr += npairs
else:
continue
currBin = binStats[binTracker]
minOfBin = currBin[0][0]
maxOfBin = currBin[0][1]
while not (minOfBin<=intxnDistance<=maxOfBin):
binTracker += 1
if binTracker not in binStats:
binTracker-=1
currBin = binStats[binTracker]
minOfBin = currBin[0][0]
maxOfBin = currBin[0][1]
break
else:
currBin = binStats[binTracker]
minOfBin = currBin[0][0]
maxOfBin = currBin[0][1]
currBin[7]+=npairs
currBin[1]+=npairs
currBin[3]+=(float(intxnDistance/distScaling)*npairs)
# possibleIntraInRangeCountPerChr += npairs
possibleInterAllCount+=n*(noOfFrags-n)
possibleIntraAllCount+=(n*(n+1))/2 # n(n-1) if excluding self
with open(logfile, 'a') as log:
log.write("Chromosome " +repr(ch) +",\t"+str(n) +" mappable fragments, \t"+str(possibleIntraInRangeCountPerChr)\
+" possible intra-chr fragment pairs in range,\t" + str((noOfFrags-n)*n) +" possible inter-chr fragment pairs\n")
possibleIntraInRangeCount += possibleIntraInRangeCountPerChr
possibleInterAllCount/=2
try:
interChrProb=1.0/possibleInterAllCount
except:
interChrProb = 0
baselineIntraChrProb=1.0/possibleIntraAllCount
else:
noOfFrags = 0
for ch in allFragsDic:
noOfFrags += len(allFragsDic[ch])
for ch in sorted(allFragsDic.keys()):
countIntraPairs = 0
fragsPerChr = sorted(allFragsDic[ch])
templen = len(fragsPerChr)
possibleInterAllCount += (noOfFrags-templen)*templen
possibleIntraInRangeCountPerChr = 0
for x in range(templen):
binTracker = 0
d = 0
for y in range(x+1,templen):
intxnDistance = abs(float(fragsPerChr[x])-float(fragsPerChr[y]))
if myUtils.in_range_check(intxnDistance, distLowThres,distUpThres):
possibleIntraInRangeCountPerChr += 1
else:
continue
maxPossibleGenomicDist = max(maxPossibleGenomicDist, intxnDistance)
minPossibleGenomicDist = min(minPossibleGenomicDist, intxnDistance)
npairs = templen-d
d+=1
currBin = binStats[binTracker]
minOfBin = currBin[0][0]
maxOfBin = currBin[0][1]
while not (minOfBin<=intxnDistance<=maxOfBin):
binTracker += 1
if binTracker not in binStats:
binTracker-=1
currBin = binStats[binTracker]
minOfBin = currBin[0][0]
maxOfBin = currBin[0][1]
break
else:
currBin = binStats[binTracker]
minOfBin = currBin[0][0]
maxOfBin = currBin[0][1]
currBin[7]+=npairs
currBin[1]+=1
currBin[3]+=float(intxnDistance/distScaling)*npairs
possibleIntraAllCount += 1
with open(logfile, 'a') as log:
log.write("Chromosome " +repr(ch) +",\t"+str(templen) +" mappable fragments, \t"+str(possibleIntraInRangeCountPerChr)\
+" possible intra-chr fragment pairs in range,\t" + str((noOfFrags-templen)*templen) +" possible inter-chr fragment pairs\n")
possibleIntraInRangeCount += possibleIntraInRangeCountPerChr
possibleInterAllCount/=2
try:
interChrProb=1.0/possibleInterAllCount
except:
interChrProb = 0
baselineIntraChrProb=1.0/possibleIntraAllCount
endT = time.time()
print("Fragments file read. Time took %s" % (endT-startT))
with open(logfile, 'a') as log:
log.write("Number of all fragments= %s\n" % (noOfFrags))
log.write("Possible, Intra-chr in range: pairs= %s \n" % (possibleIntraInRangeCount))
log.write("Possible, Intra-chr all: pairs= %s \n" % (possibleIntraAllCount))
log.write("Possible, Inter-chr all: pairs= %s \n" % (possibleInterAllCount))
log.write("Desired genomic distance range [%d %s] \n" % (distLowThres,distUpThres)),
log.write("Range of possible genomic distances [%d %d] \n" % (minPossibleGenomicDist, maxPossibleGenomicDist)),
log.write("Baseline intrachromosomal probability is %s \n" % (baselineIntraChrProb)),
log.write("Interchromosomal probability is %s \n" % (interChrProb)),
return (binStats,noOfFrags, maxPossibleGenomicDist, possibleIntraInRangeCount, possibleInterAllCount, interChrProb, baselineIntraChrProb) # return from generate_FragPairs
def read_biases(infilename):
startt = time.time()
biasDic={}
rawBiases=[]
infile = open(infilename, 'rt')
for line in infile:
words=line.rstrip().split()
chr=words[0]; midPoint=int(words[1]); bias=float(words[2])
if bias!=1.0:
rawBiases.append(bias)
infile.close()
botQ,med,topQ=mquantiles(rawBiases,prob=[0.05,0.5,0.95])
with open(logfile, 'a') as log:
log.write("5th quantile of biases: "+str(botQ)+"\n")
log.write("50th quantile of biases: "+str(med)+"\n")
log.write("95th quantile of biases: "+str(topQ)+"\n")
infile = open(infilename, 'rt')
totalC=0
discardC=0
for line in infile:
words=line.rstrip().split()
chr=words[0]; midPoint=int(words[1]); bias=float(words[2]);
if bias<biasLowerBound:
bias=-1 #botQ
discardC+=1
elif bias>biasUpperBound:
bias=-1 #topQ
#bias=1
discardC+=1
totalC+=1
if chr not in biasDic:
biasDic[chr]={}
if midPoint not in biasDic[chr]:
biasDic[chr][midPoint]=bias
infile.close()
with open(logfile, 'a') as log:
log.write("Out of " + str(totalC) + " loci " +str(discardC) +" were discarded with biases not in range [0.5 2]\n\n" )
endt = time.time()
print("Bias file read. Time took %s" % (endt-startt))
return biasDic # from read_biases
def calculateProbabilities(mainDic,binStats,resolution,outfilename,observedIntraInRangeSum):
with open(logfile, 'a') as log:
log.write("\nCalculating probability means and standard deviations of contact counts\n"),
log.write("------------------------------------------------------------------------------------\n"),
if resolution:
nameoffile = (outfilename+'.res'+str(resolution)+'.txt')
else:
nameoffile = (outfilename+'.txt')
outfile=open(nameoffile, 'w')
x = []
y = []
yerr = []
pairCounts=[]
interactionTotals=[]
##binStats
#0: range of distances in this bin
#1: no. of possible pairs w/in this range of distances
#2: sumoverallContactCounts
#3: Sumoveralldistances in this bin in distScaling vals
#4: avg CC
#5: avg distance
#6: bins
#7: no. of possible pairs w/ proper dist
for i in range(len(binStats)):
currBin = binStats[i]
sumCC = currBin[2]
sumDistB4Scaling = currBin[3]
possPairsInRange = currBin[1]
avgCC = (1.0*sumCC/possPairsInRange)/observedIntraInRangeSum
avgDist = distScaling*(sumDistB4Scaling/currBin[7])
currBin[4]=avgCC
currBin[5]=avgDist
y.append(avgCC)
x.append(avgDist)
meanCountPerPair = 0
M2 = 0
for dists in currBin[6]: #by definition not including the nonzero dists in this bin in this calc.
delta = mainDic[dists][1]-meanCountPerPair
meanCountPerPair += (delta*1.0)/possPairsInRange
M2 += delta*(mainDic[dists][1]-meanCountPerPair)
var = M2/(possPairsInRange-1)
sd = math.sqrt(var)
se = sd/math.sqrt(possPairsInRange)
se_p = se/observedIntraInRangeSum
#yerr.append(se_p)
yerr.append(0)
pairCounts.append(possPairsInRange)
interactionTotals.append(sumCC)
print("Writing %s" % nameoffile)
outfile.write("avgGenomicDist\tcontactProbability\tstandardError\tnoOfLocusPairs\ttotalOfContactCounts\n")
for i in range(len(x)):
outfile.write("%d" % x[i] + "\t"+"%.2e" % y[i]+ "\t" + "%.2e" % yerr[i] + "\t" +"%d" % pairCounts[i] + "\t" +"%d" % interactionTotals[i]+"\n")
outfile.close()
with open(logfile, 'a') as log:
log.write("Means and error written to %s\n" % (nameoffile)),
log.write("\n"),
return [x,y,yerr] # from calculateProbabilities
def fit_Spline(mainDic,x,y,yerr,infilename,outfilename,biasDic,outliersline,outliersdist,observedIntraInRangeSum, possibleIntraInRangeCount, possibleInterAllCount, observedIntraAllSum, observedInterAllSum, resolution, passNo):
with open(logfile, 'a') as log:
log.write("\nFitting a univariate spline to the probability means\n"),
log.write("------------------------------------------------------------------------------------\n"),
for i in range(1,len(x)):
if x[i]<=x[i-1]:
print("ERROR in spline fitting. Regenerate dataset ~ erroneous values found.")
print(x[i-1])
print(x[i])
sys.exit(2)
# maximum residual allowed for spline is set to min(y)^2
splineError=min(y)*min(y)
# use fitpack2 method -fit on the real x and y from equal occupancy binning
ius = UnivariateSpline(x, y, s=splineError)
tempMaxX=max(x)
tempMinX=min(x)
tempList=sorted([dis for dis in mainDic])
splineX=[]
### The below for loop will make sure nothing is out of range of [min(x) max(x)]
### Therefore everything will be within the range where the spline is defined
for i in tempList:
if tempMinX<=i<=tempMaxX:
splineX.append(i)
splineY=ius(splineX)
#print(splineY)
#print(yerr)
ir = IsotonicRegression(increasing=False)
newSplineY = ir.fit_transform(splineX,splineY)
#print(newSplineY)
residual =sum([i*i for i in (y - ius(x))])
if visual==True:
xi = np.linspace(min(x),max(x),5*len(x))
yi = ius(xi)
print("Plotting %s" % (outfilename + ".png"))
plt.clf()
fig = plt.figure()
ax = fig.add_subplot(2,1,1)
plt.plot(myUtils.scale_a_list(splineX,toKb), myUtils.scale_a_list(newSplineY,toProb),'g-',label="spline-"+str(passNo),linewidth=2)
plt.errorbar(myUtils.scale_a_list(x,toKb),myUtils.scale_a_list(y,toProb),myUtils.scale_a_list(yerr,toProb),fmt='r.',label="Mean with std. error",linewidth=2)
#plt.ylabel('Contact probability (x10$^{-5}$)',fontsize='large')
#plt.xlabel('Genomic distance (kb)',fontsize='large')
plt.ylabel('Contact probability (x10$^{-5}$)')
plt.xlabel('Genomic distance (kb)')
if distLowThres>0 and distUpThres<float("inf"):
plt.xlim(myUtils.scale_a_list([distLowThres, distUpThres],toKb))
plt.gca().yaxis.set_major_locator( MaxNLocator(nbins = 3, prune=None))
ax.legend(loc="upper right")
ax = fig.add_subplot(2,1,2)
plt.loglog(splineX,newSplineY,'g-')
plt.errorbar(x, y, yerr=yerr, fmt='r.') # Data
if distLowThres>0 and distUpThres<float("inf"):
plt.xlim([distLowThres, distUpThres])
plt.ylabel('Contact probability (log-scale)')
plt.xlabel('Genomic distance (log-scale)')
plt.savefig(outfilename+'.png')
# NOW write the calculated pvalues and corrected pvalues in a file
infile = open(infilename, 'rt')
intraInRangeCount=0
intraOutOfRangeCount=0
intraVeryProximalCount=0
interCount=0
discardCount=0
p_vals=[]
q_vals=[]
biasl=[]
biasr=[]
for line in infile:
ch1,mid1,ch2,mid2,contactCount=line.rstrip().split()
contactCount = float(contactCount)
interxn=myUtils.Interaction([ch1, int(mid1), ch2, int(mid2)])
interxn.setCount(contactCount)
mid1 = int(mid1); mid2 = int(mid2)
interactionType = interxn.getType(distLowThres,distUpThres)
bias1=1.0; bias2=1.0; # assumes there is no bias to begin with
# if the biasDic is not null sets the real bias values
if biasDic:
if ch1 in biasDic and mid1 in biasDic[ch1]:
bias1=biasDic[ch1][mid1]
if ch2 in biasDic and mid2 in biasDic[ch2]:
bias2=biasDic[ch2][mid2]
biasl.append(bias1)
biasr.append(bias2)
if (bias1<0 or bias2<0) and interactionType !='inter':
prior_p=1.0
p_val=1.0
discardCount+=1
elif interactionType=='intraInRange' and not interOnly:
distToLookUp=max(interxn.getDistance(),min(x))
distToLookUp=min(distToLookUp,max(x))
i=min(bisect.bisect_left(splineX, distToLookUp),len(splineX)-1)
prior_p=newSplineY[i]*(bias1*bias2)
p_val=scsp.bdtrc(interxn.getCount()-1,observedIntraInRangeSum,prior_p)
intraInRangeCount +=1
elif interactionType =='intraShort' and not interOnly:
prior_p=1.0
p_val=1.0
intraVeryProximalCount += 1
elif interactionType =='intraLong' and not interOnly:
prior_p=1.0
#p_val=scsp.bdtrc(interxn.getCount()-1, observedIntraAllSum,prior_p) ##RUNBY
p_val=1.0
intraOutOfRangeCount += 1
else:
if allReg or interOnly:
prior_p=interChrProb*(bias1*bias2)
p_val=scsp.bdtrc(interxn.getCount()-1,observedInterAllSum,prior_p)
interCount += 1
else:
p_val=1.0
#p_vals.append(p_val)
p_vals.append(p_val)
infile.close()
outlierThres = 0
# Do the BH FDR correction
if allReg:
outlierThres=1.0/(possibleIntraInRangeCount+possibleInterAllCount)
q_vals=myStats.benjamini_hochberg_correction(p_vals, possibleInterAllCount+possibleIntraInRangeCount)
elif interOnly and not allReg:
outlierThres = 1.0/possibleInterAllCount
q_vals=myStats.benjamini_hochberg_correction(p_vals, possibleInterAllCount)
else:
outlierThres = 1.0/possibleIntraInRangeCount
q_vals=myStats.benjamini_hochberg_correction(p_vals, possibleIntraInRangeCount)
print("Outlier threshold is... %s" % (outlierThres))
#now we write the values back to the file
infile = open(infilename, 'rt')
if resolution:
outfile = open(outfilename+'.res'+str(resolution)+'.significances.txt', 'wt')
else:
outfile = open(outfilename+'.significances.txt', 'wt')
print("Writing p-values and q-values to file %s" % (outfilename + ".significances.txt"))
outfile.write("chr1\tfragmentMid1\tchr2\tfragmentMid2\tcontactCount\tp-value\tq-value\tbias1\tbias2\n")
count=0
for line in infile:
words=line.rstrip().split()
chr1=words[0]
midPoint1=int(words[1])
chr2=words[2]
midPoint2=int(words[3])
interactionCount=int(words[4])
p_val=p_vals[count]
q_val=q_vals[count]
bias1=biasl[count]
bias2=biasr[count]
if (allReg or interOnly) and chr1!=chr2:
outfile.write("%s\t%d\t%s\t%d\t%d\t%e\t%e\t%e\t%e\n" % (str(chr1), midPoint1, str(chr2), midPoint2, interactionCount, p_val, q_val, bias1, bias2))
if (allReg or not interOnly) and chr1==chr2:
interactionDistance = abs(midPoint1-midPoint2)
if myUtils.in_range_check(interactionDistance,distLowThres, distUpThres):
outfile.write("%s\t%d\t%s\t%d\t%d\t%e\t%e\t%e\t%e\n" % (str(chr1), midPoint1, str(chr2), midPoint2, interactionCount, p_val, q_val, bias1, bias2))
if p_val<outlierThres:
outliersline.add(count)
outliersdist.add(abs(midPoint1-midPoint2))
count+=1
outfile.close()
infile.close()
if visual == True:
print("Plotting q-values to file %s" % outfilename + ".qplot.png")
minFDR=0.0
maxFDR=0.05
increment=0.001
FDRx,FDRy=plot_qvalues(q_vals,minFDR,maxFDR,increment,outfilename+".qplot")
with open(logfile, 'a') as log:
log.write("Spline successfully fit\n"),
log.write("\n"),
log.write("\n"),
return [splineX, newSplineY, residual, outliersline, outliersdist, FDRx, FDRy] # from fit_Spline
def plot_qvalues(q_values,minFDR,maxFDR,increment,outfilename):
qvalTicks=np.arange(minFDR,maxFDR+increment,increment)
significantTicks=[0 for i in range(len(qvalTicks))]
qvalBins=[-1 for i in range(len(q_values))]
for i, q in enumerate(q_values):
if math.isnan(q): q=1 #make sure NaNs are set to 1
qvalBins[i]=int(math.floor(q/increment))
for i in range(len(qvalBins)):
if qvalBins[i]>=len(qvalTicks):
continue
significantTicks[qvalBins[i]]+=1
# make it cumulative
for i in range(1,len(significantTicks)):
significantTicks[i]=significantTicks[i]+significantTicks[i-1]
# shift them by 1
for i in range(1,len(significantTicks)):
significantTicks[-1*i]=significantTicks[-1*i-1]
significantTicks[0]=0
if visual==True:
plt.clf()
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
plt.plot(qvalTicks,significantTicks, 'b*-')
plt.xlabel('FDR threshold')
plt.ylabel('Number of significant contacts')
plt.savefig(outfilename+'.png')
return [qvalTicks,significantTicks]
def compare_Spline_FDR(splineFDRxinit,splineFDRyinit,splineFDRx,splineFDRy,figname,i):
newlab = 'spline-' + str(i)
plt.clf()
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
plt.plot(splineFDRx[1:],myUtils.scale_a_list(splineFDRy[1:],toKb), 'r+-',label=newlab)
plt.plot(splineFDRxinit[1:],myUtils.scale_a_list(splineFDRyinit[1:],toKb), 'g.-',label='spline-1')
plt.xlabel('FDR threshold')
plt.ylabel('Significant contacts (x10$^{3}$)')
plt.gca().yaxis.set_major_locator( MaxNLocator(prune='lower'))
lg=ax.legend(loc="lower right")