- An overview of the Flare Transformer.
- Python 3.6.9
- Ubuntu 18.04
- In the following procedure,
~/work
is assumed to be used as a working directory.
$ cd ~/work
$ git clone URL
$ cd flare_transformer
$ pip install -U pip
$ pip install -r require.txt
- The required data files should be put under
data/
folder. - Visit http://wdc.nict.go.jp/IONO/wdc/solarflare/index.html and download the database of physical features.
$ cd ~/work/flare_transformer
$ mv ~/data.zip data/
$ unzip data/data.zip
- Visit https://sdo.gsfc.nasa.gov/data/ and download hourly magnetograms.
$ mv ~/magnetogram_images.tar.gz data/
$ tar -zxvf data/magnetogram_images.tar.gz
- Preprocess the physical features and magnetogram images by the following procedure.
$ python src/preprocess.py
- The following data files should be created under
data/
.- data/data_20XX_magnetogram.npy
- data/data_20XX_feat.csv
- data/data_20XX_window.csv
- data/data_20XX_label.csv
$ cd ~/work/flare_transformer
$ ./train.sh
- Training example is shown in
train.sh
.--params
should be specified according to your settings. --params
takes a path of a JSON file. In the JSON file, values for parameters such as learning rate, batch size, etc. should be specified.- A sample of a JSON file is shown in
params/params2017.json
.